A beginner's guide to time travel

Learn exactly how Einstein's theory of relativity works, and discover how there's nothing in science that says time travel is impossible.

Actor Rod Taylor tests his time machine in a still from the film 'The Time Machine', directed by George Pal, 1960.

Everyone can travel in time . You do it whether you want to or not, at a steady rate of one second per second. You may think there's no similarity to traveling in one of the three spatial dimensions at, say, one foot per second. But according to Einstein 's theory of relativity , we live in a four-dimensional continuum — space-time — in which space and time are interchangeable.

Einstein found that the faster you move through space, the slower you move through time — you age more slowly, in other words. One of the key ideas in relativity is that nothing can travel faster than the speed of light — about 186,000 miles per second (300,000 kilometers per second), or one light-year per year). But you can get very close to it. If a spaceship were to fly at 99% of the speed of light, you'd see it travel a light-year of distance in just over a year of time. 

That's obvious enough, but now comes the weird part. For astronauts onboard that spaceship, the journey would take a mere seven weeks. It's a consequence of relativity called time dilation , and in effect, it means the astronauts have jumped about 10 months into the future. 

Traveling at high speed isn't the only way to produce time dilation. Einstein showed that gravitational fields produce a similar effect — even the relatively weak field here on the surface of Earth . We don't notice it, because we spend all our lives here, but more than 12,400 miles (20,000 kilometers) higher up gravity is measurably weaker— and time passes more quickly, by about 45 microseconds per day. That's more significant than you might think, because it's the altitude at which GPS satellites orbit Earth, and their clocks need to be precisely synchronized with ground-based ones for the system to work properly. 

The satellites have to compensate for time dilation effects due both to their higher altitude and their faster speed. So whenever you use the GPS feature on your smartphone or your car's satnav, there's a tiny element of time travel involved. You and the satellites are traveling into the future at very slightly different rates.

Navstar-2F GPS satellite

But for more dramatic effects, we need to look at much stronger gravitational fields, such as those around black holes , which can distort space-time so much that it folds back on itself. The result is a so-called wormhole, a concept that's familiar from sci-fi movies, but actually originates in Einstein's theory of relativity. In effect, a wormhole is a shortcut from one point in space-time to another. You enter one black hole, and emerge from another one somewhere else. Unfortunately, it's not as practical a means of transport as Hollywood makes it look. That's because the black hole's gravity would tear you to pieces as you approached it, but it really is possible in theory. And because we're talking about space-time, not just space, the wormhole's exit could be at an earlier time than its entrance; that means you would end up in the past rather than the future.

Trajectories in space-time that loop back into the past are given the technical name "closed timelike curves." If you search through serious academic journals, you'll find plenty of references to them — far more than you'll find to "time travel." But in effect, that's exactly what closed timelike curves are all about — time travel

How It Works issue 152

This article is brought to you by  How It Works .

How It Works is the action-packed magazine that's bursting with exciting information about the latest advances in science and technology, featuring everything you need to know about how the world around you — and the universe — works.

There's another way to produce a closed timelike curve that doesn't involve anything quite so exotic as a black hole or wormhole: You just need a simple rotating cylinder made of super-dense material. This so-called Tipler cylinder is the closest that real-world physics can get to an actual, genuine time machine. But it will likely never be built in the real world, so like a wormhole, it's more of an academic curiosity than a viable engineering design.

Yet as far-fetched as these things are in practical terms, there's no fundamental scientific reason — that we currently know of — that says they are impossible. That's a thought-provoking situation, because as the physicist Michio Kaku is fond of saying, "Everything not forbidden is compulsory" (borrowed from T.H. White's novel, "The Once And Future King"). He doesn't mean time travel has to happen everywhere all the time, but Kaku is suggesting that the universe is so vast it ought to happen somewhere at least occasionally. Maybe some super-advanced civilization in another galaxy knows how to build a working time machine, or perhaps closed timelike curves can even occur naturally under certain rare conditions.

An artist's impression of a pair of neutron stars - a Tipler cylinder requires at least ten.

This raises problems of a different kind — not in science or engineering, but in basic logic. If time travel is allowed by the laws of physics, then it's possible to envision a whole range of paradoxical scenarios . Some of these appear so illogical that it's difficult to imagine that they could ever occur. But if they can't, what's stopping them? 

Thoughts like these prompted Stephen Hawking , who was always skeptical about the idea of time travel into the past, to come up with his "chronology protection conjecture" — the notion that some as-yet-unknown law of physics prevents closed timelike curves from happening. But that conjecture is only an educated guess, and until it is supported by hard evidence, we can come to only one conclusion: Time travel is possible.

A party for time travelers 

Hawking was skeptical about the feasibility of time travel into the past, not because he had disproved it, but because he was bothered by the logical paradoxes it created. In his chronology protection conjecture, he surmised that physicists would eventually discover a flaw in the theory of closed timelike curves that made them impossible. 

In 2009, he came up with an amusing way to test this conjecture. Hawking held a champagne party (shown in his Discovery Channel program), but he only advertised it after it had happened. His reasoning was that, if time machines eventually become practical, someone in the future might read about the party and travel back to attend it. But no one did — Hawking sat through the whole evening on his own. This doesn't prove time travel is impossible, but it does suggest that it never becomes a commonplace occurrence here on Earth.

The arrow of time 

One of the distinctive things about time is that it has a direction — from past to future. A cup of hot coffee left at room temperature always cools down; it never heats up. Your cellphone loses battery charge when you use it; it never gains charge. These are examples of entropy , essentially a measure of the amount of "useless" as opposed to "useful" energy. The entropy of a closed system always increases, and it's the key factor determining the arrow of time.

It turns out that entropy is the only thing that makes a distinction between past and future. In other branches of physics, like relativity or quantum theory, time doesn't have a preferred direction. No one knows where time's arrow comes from. It may be that it only applies to large, complex systems, in which case subatomic particles may not experience the arrow of time.

Time travel paradox 

If it's possible to travel back into the past — even theoretically — it raises a number of brain-twisting paradoxes — such as the grandfather paradox — that even scientists and philosophers find extremely perplexing.

Killing Hitler

A time traveler might decide to go back and kill him in his infancy. If they succeeded, future history books wouldn't even mention Hitler — so what motivation would the time traveler have for going back in time and killing him?

Killing your grandfather

Instead of killing a young Hitler, you might, by accident, kill one of your own ancestors when they were very young. But then you would never be born, so you couldn't travel back in time to kill them, so you would be born after all, and so on … 

A closed loop

Suppose the plans for a time machine suddenly appear from thin air on your desk. You spend a few days building it, then use it to send the plans back to your earlier self. But where did those plans originate? Nowhere — they are just looping round and round in time.

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

How It Works magazine

How It Works has a special formula for making learning fun by answering questions on science, space, history, technology, transport and the environment with engaging articles, in-depth special features, global science news, and topical interviews. With impressive cutaway illustrations that show how things function, and mindblowing photography of the planet’s most inspiring spectacles, How It Works represents the pinnacle of engaging, factual fun for a mainstream audience keen to keep up with the latest tech and the most impressive phenomena on the planet and beyond. Written and presented in a style that makes even the most complex subjects interesting and easy to understand, How It Works is enjoyed by readers of all ages.

Get fantastic offers by subscribing to the digital and/or print edition now. Subscribers get 13 issues per year!

James Webb telescope's 'shocking' discovery may hint at hidden exomoon around 'failed star'

NASA reveals 'glass-smooth lake of cooling lava' on surface of Jupiter's moon Io

Haunting photo of Earth and moon snapped by China's experimental lunar satellites

Most Popular

  • 2 Giant, 82-foot lizard fish discovered on UK beach could be largest marine reptile ever found
  • 3 Nightmare fish may explain how our 'fight or flight' response evolved
  • 4 Lyrid meteor shower 2024: How to watch stunning shooting stars and 'fireballs' during the event's peak this week
  • 5 Why do cats' claws retract but dogs' claws don't?
  • 2 'Uncharted territory': El Niño to flip to La Niña in what could be the hottest year on record
  • 3 Rare 'porcelain gallbladder' found in 100-year-old unmarked grave at Mississippi mental asylum cemetery
  • 4 NASA reveals 'glass-smooth lake of cooling lava' on surface of Jupiter's moon Io
  • 5 'We were in disbelief': Antarctica is behaving in a way we've never seen before. Can it recover?

is time travel easy

Image that reads Space Place and links to spaceplace.nasa.gov.

Is Time Travel Possible?

We all travel in time! We travel one year in time between birthdays, for example. And we are all traveling in time at approximately the same speed: 1 second per second.

We typically experience time at one second per second. Credit: NASA/JPL-Caltech

NASA's space telescopes also give us a way to look back in time. Telescopes help us see stars and galaxies that are very far away . It takes a long time for the light from faraway galaxies to reach us. So, when we look into the sky with a telescope, we are seeing what those stars and galaxies looked like a very long time ago.

However, when we think of the phrase "time travel," we are usually thinking of traveling faster than 1 second per second. That kind of time travel sounds like something you'd only see in movies or science fiction books. Could it be real? Science says yes!

Image of galaxies, taken by the Hubble Space Telescope.

This image from the Hubble Space Telescope shows galaxies that are very far away as they existed a very long time ago. Credit: NASA, ESA and R. Thompson (Univ. Arizona)

How do we know that time travel is possible?

More than 100 years ago, a famous scientist named Albert Einstein came up with an idea about how time works. He called it relativity. This theory says that time and space are linked together. Einstein also said our universe has a speed limit: nothing can travel faster than the speed of light (186,000 miles per second).

Einstein's theory of relativity says that space and time are linked together. Credit: NASA/JPL-Caltech

What does this mean for time travel? Well, according to this theory, the faster you travel, the slower you experience time. Scientists have done some experiments to show that this is true.

For example, there was an experiment that used two clocks set to the exact same time. One clock stayed on Earth, while the other flew in an airplane (going in the same direction Earth rotates).

After the airplane flew around the world, scientists compared the two clocks. The clock on the fast-moving airplane was slightly behind the clock on the ground. So, the clock on the airplane was traveling slightly slower in time than 1 second per second.

Credit: NASA/JPL-Caltech

Can we use time travel in everyday life?

We can't use a time machine to travel hundreds of years into the past or future. That kind of time travel only happens in books and movies. But the math of time travel does affect the things we use every day.

For example, we use GPS satellites to help us figure out how to get to new places. (Check out our video about how GPS satellites work .) NASA scientists also use a high-accuracy version of GPS to keep track of where satellites are in space. But did you know that GPS relies on time-travel calculations to help you get around town?

GPS satellites orbit around Earth very quickly at about 8,700 miles (14,000 kilometers) per hour. This slows down GPS satellite clocks by a small fraction of a second (similar to the airplane example above).

Illustration of GPS satellites orbiting around Earth

GPS satellites orbit around Earth at about 8,700 miles (14,000 kilometers) per hour. Credit: GPS.gov

However, the satellites are also orbiting Earth about 12,550 miles (20,200 km) above the surface. This actually speeds up GPS satellite clocks by a slighter larger fraction of a second.

Here's how: Einstein's theory also says that gravity curves space and time, causing the passage of time to slow down. High up where the satellites orbit, Earth's gravity is much weaker. This causes the clocks on GPS satellites to run faster than clocks on the ground.

The combined result is that the clocks on GPS satellites experience time at a rate slightly faster than 1 second per second. Luckily, scientists can use math to correct these differences in time.

Illustration of a hand holding a phone with a maps application active.

If scientists didn't correct the GPS clocks, there would be big problems. GPS satellites wouldn't be able to correctly calculate their position or yours. The errors would add up to a few miles each day, which is a big deal. GPS maps might think your home is nowhere near where it actually is!

In Summary:

Yes, time travel is indeed a real thing. But it's not quite what you've probably seen in the movies. Under certain conditions, it is possible to experience time passing at a different rate than 1 second per second. And there are important reasons why we need to understand this real-world form of time travel.

If you liked this, you may like:

Illustration of a game controller that links to the Space Place Games menu.

April 26, 2023

Is Time Travel Possible?

The laws of physics allow time travel. So why haven’t people become chronological hoppers?

By Sarah Scoles

3D illustration tunnel background

yuanyuan yan/Getty Images

In the movies, time travelers typically step inside a machine and—poof—disappear. They then reappear instantaneously among cowboys, knights or dinosaurs. What these films show is basically time teleportation .

Scientists don’t think this conception is likely in the real world, but they also don’t relegate time travel to the crackpot realm. In fact, the laws of physics might allow chronological hopping, but the devil is in the details.

Time traveling to the near future is easy: you’re doing it right now at a rate of one second per second, and physicists say that rate can change. According to Einstein’s special theory of relativity, time’s flow depends on how fast you’re moving. The quicker you travel, the slower seconds pass. And according to Einstein’s general theory of relativity , gravity also affects clocks: the more forceful the gravity nearby, the slower time goes.

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

“Near massive bodies—near the surface of neutron stars or even at the surface of the Earth, although it’s a tiny effect—time runs slower than it does far away,” says Dave Goldberg, a cosmologist at Drexel University.

If a person were to hang out near the edge of a black hole , where gravity is prodigious, Goldberg says, only a few hours might pass for them while 1,000 years went by for someone on Earth. If the person who was near the black hole returned to this planet, they would have effectively traveled to the future. “That is a real effect,” he says. “That is completely uncontroversial.”

Going backward in time gets thorny, though (thornier than getting ripped to shreds inside a black hole). Scientists have come up with a few ways it might be possible, and they have been aware of time travel paradoxes in general relativity for decades. Fabio Costa, a physicist at the Nordic Institute for Theoretical Physics, notes that an early solution with time travel began with a scenario written in the 1920s. That idea involved massive long cylinder that spun fast in the manner of straw rolled between your palms and that twisted spacetime along with it. The understanding that this object could act as a time machine allowing one to travel to the past only happened in the 1970s, a few decades after scientists had discovered a phenomenon called “closed timelike curves.”

“A closed timelike curve describes the trajectory of a hypothetical observer that, while always traveling forward in time from their own perspective, at some point finds themselves at the same place and time where they started, creating a loop,” Costa says. “This is possible in a region of spacetime that, warped by gravity, loops into itself.”

“Einstein read [about closed timelike curves] and was very disturbed by this idea,” he adds. The phenomenon nevertheless spurred later research.

Science began to take time travel seriously in the 1980s. In 1990, for instance, Russian physicist Igor Novikov and American physicist Kip Thorne collaborated on a research paper about closed time-like curves. “They started to study not only how one could try to build a time machine but also how it would work,” Costa says.

Just as importantly, though, they investigated the problems with time travel. What if, for instance, you tossed a billiard ball into a time machine, and it traveled to the past and then collided with its past self in a way that meant its present self could never enter the time machine? “That looks like a paradox,” Costa says.

Since the 1990s, he says, there’s been on-and-off interest in the topic yet no big breakthrough. The field isn’t very active today, in part because every proposed model of a time machine has problems. “It has some attractive features, possibly some potential, but then when one starts to sort of unravel the details, there ends up being some kind of a roadblock,” says Gaurav Khanna of the University of Rhode Island.

For instance, most time travel models require negative mass —and hence negative energy because, as Albert Einstein revealed when he discovered E = mc 2 , mass and energy are one and the same. In theory, at least, just as an electric charge can be positive or negative, so can mass—though no one’s ever found an example of negative mass. Why does time travel depend on such exotic matter? In many cases, it is needed to hold open a wormhole—a tunnel in spacetime predicted by general relativity that connects one point in the cosmos to another.

Without negative mass, gravity would cause this tunnel to collapse. “You can think of it as counteracting the positive mass or energy that wants to traverse the wormhole,” Goldberg says.

Khanna and Goldberg concur that it’s unlikely matter with negative mass even exists, although Khanna notes that some quantum phenomena show promise, for instance, for negative energy on very small scales. But that would be “nowhere close to the scale that would be needed” for a realistic time machine, he says.

These challenges explain why Khanna initially discouraged Caroline Mallary, then his graduate student at the University of Massachusetts Dartmouth, from doing a time travel project. Mallary and Khanna went forward anyway and came up with a theoretical time machine that didn’t require negative mass. In its simplistic form, Mallary’s idea involves two parallel cars, each made of regular matter. If you leave one parked and zoom the other with extreme acceleration, a closed timelike curve will form between them.

Easy, right? But while Mallary’s model gets rid of the need for negative matter, it adds another hurdle: it requires infinite density inside the cars for them to affect spacetime in a way that would be useful for time travel. Infinite density can be found inside a black hole, where gravity is so intense that it squishes matter into a mind-bogglingly small space called a singularity. In the model, each of the cars needs to contain such a singularity. “One of the reasons that there's not a lot of active research on this sort of thing is because of these constraints,” Mallary says.

Other researchers have created models of time travel that involve a wormhole, or a tunnel in spacetime from one point in the cosmos to another. “It's sort of a shortcut through the universe,” Goldberg says. Imagine accelerating one end of the wormhole to near the speed of light and then sending it back to where it came from. “Those two sides are no longer synced,” he says. “One is in the past; one is in the future.” Walk between them, and you’re time traveling.

You could accomplish something similar by moving one end of the wormhole near a big gravitational field—such as a black hole—while keeping the other end near a smaller gravitational force. In that way, time would slow down on the big gravity side, essentially allowing a particle or some other chunk of mass to reside in the past relative to the other side of the wormhole.

Making a wormhole requires pesky negative mass and energy, however. A wormhole created from normal mass would collapse because of gravity. “Most designs tend to have some similar sorts of issues,” Goldberg says. They’re theoretically possible, but there’s currently no feasible way to make them, kind of like a good-tasting pizza with no calories.

And maybe the problem is not just that we don’t know how to make time travel machines but also that it’s not possible to do so except on microscopic scales—a belief held by the late physicist Stephen Hawking. He proposed the chronology protection conjecture: The universe doesn’t allow time travel because it doesn’t allow alterations to the past. “It seems there is a chronology protection agency, which prevents the appearance of closed timelike curves and so makes the universe safe for historians,” Hawking wrote in a 1992 paper in Physical Review D .

Part of his reasoning involved the paradoxes time travel would create such as the aforementioned situation with a billiard ball and its more famous counterpart, the grandfather paradox : If you go back in time and kill your grandfather before he has children, you can’t be born, and therefore you can’t time travel, and therefore you couldn’t have killed your grandfather. And yet there you are.

Those complications are what interests Massachusetts Institute of Technology philosopher Agustin Rayo, however, because the paradoxes don’t just call causality and chronology into question. They also make free will seem suspect. If physics says you can go back in time, then why can’t you kill your grandfather? “What stops you?” he says. Are you not free?

Rayo suspects that time travel is consistent with free will, though. “What’s past is past,” he says. “So if, in fact, my grandfather survived long enough to have children, traveling back in time isn’t going to change that. Why will I fail if I try? I don’t know because I don’t have enough information about the past. What I do know is that I’ll fail somehow.”

If you went to kill your grandfather, in other words, you’d perhaps slip on a banana en route or miss the bus. “It's not like you would find some special force compelling you not to do it,” Costa says. “You would fail to do it for perfectly mundane reasons.”

In 2020 Costa worked with Germain Tobar, then his undergraduate student at the University of Queensland in Australia, on the math that would underlie a similar idea: that time travel is possible without paradoxes and with freedom of choice.

Goldberg agrees with them in a way. “I definitely fall into the category of [thinking that] if there is time travel, it will be constructed in such a way that it produces one self-consistent view of history,” he says. “Because that seems to be the way that all the rest of our physical laws are constructed.”

No one knows what the future of time travel to the past will hold. And so far, no time travelers have come to tell us about it.

Is time travel possible? Why one scientist says we 'cannot ignore the possibility.'

is time travel easy

A common theme in science-fiction media , time travel is captivating. It’s defined by the late philosopher David Lewis in his essay “The Paradoxes of Time Travel” as “[involving] a discrepancy between time and space time. Any traveler departs and then arrives at his destination; the time elapsed from departure to arrival … is the duration of the journey.”

Time travel is usually understood by most as going back to a bygone era or jumping forward to a point far in the future . But how much of the idea is based in reality? Is it possible to travel through time? 

Is time travel possible?

According to NASA, time travel is possible , just not in the way you might expect. Albert Einstein’s theory of relativity says time and motion are relative to each other, and nothing can go faster than the speed of light , which is 186,000 miles per second. Time travel happens through what’s called “time dilation.”

Time dilation , according to Live Science, is how one’s perception of time is different to another's, depending on their motion or where they are. Hence, time being relative. 

Learn more: Best travel insurance

Dr. Ana Alonso-Serrano, a postdoctoral researcher at the Max Planck Institute for Gravitational Physics in Germany, explained the possibility of time travel and how researchers test theories. 

Space and time are not absolute values, Alonso-Serrano said. And what makes this all more complex is that you are able to carve space-time .

“In the moment that you carve the space-time, you can play with that curvature to make the time come in a circle and make a time machine,” Alonso-Serrano told USA TODAY. 

She explained how, theoretically, time travel is possible. The mathematics behind creating curvature of space-time are solid, but trying to re-create the strict physical conditions needed to prove these theories can be challenging. 

“The tricky point of that is if you can find a physical, realistic, way to do it,” she said. 

Alonso-Serrano said wormholes and warp drives are tools that are used to create this curvature. The matter needed to achieve curving space-time via a wormhole is exotic matter , which hasn’t been done successfully. Researchers don’t even know if this type of matter exists, she said.

“It's something that we work on because it's theoretically possible, and because it's a very nice way to test our theory, to look for possible paradoxes,” Alonso-Serrano added.

“I could not say that nothing is possible, but I cannot ignore the possibility,” she said. 

She also mentioned the anecdote of  Stephen Hawking’s Champagne party for time travelers . Hawking had a GPS-specific location for the party. He didn’t send out invites until the party had already happened, so only people who could travel to the past would be able to attend. No one showed up, and Hawking referred to this event as "experimental evidence" that time travel wasn't possible.

What did Albert Einstein invent?: Discoveries that changed the world

Just Curious for more? We've got you covered

USA TODAY is exploring the questions you and others ask every day. From "How to watch the Marvel movies in order" to "Why is Pluto not a planet?" to "What to do if your dog eats weed?" – we're striving to find answers to the most common questions you ask every day. Head to our Just Curious section to see what else we can answer for you. 

A pair of hands hold a disintegrating white round clock

Can we time travel? A theoretical physicist provides some answers

is time travel easy

Emeritus professor, Physics, Carleton University

Disclosure statement

Peter Watson received funding from NSERC. He is affiliated with Carleton University and a member of the Canadian Association of Physicists.

Carleton University provides funding as a member of The Conversation CA.

Carleton University provides funding as a member of The Conversation CA-FR.

View all partners

  • Bahasa Indonesia

Time travel makes regular appearances in popular culture, with innumerable time travel storylines in movies, television and literature. But it is a surprisingly old idea: one can argue that the Greek tragedy Oedipus Rex , written by Sophocles over 2,500 years ago, is the first time travel story .

But is time travel in fact possible? Given the popularity of the concept, this is a legitimate question. As a theoretical physicist, I find that there are several possible answers to this question, not all of which are contradictory.

The simplest answer is that time travel cannot be possible because if it was, we would already be doing it. One can argue that it is forbidden by the laws of physics, like the second law of thermodynamics or relativity . There are also technical challenges: it might be possible but would involve vast amounts of energy.

There is also the matter of time-travel paradoxes; we can — hypothetically — resolve these if free will is an illusion, if many worlds exist or if the past can only be witnessed but not experienced. Perhaps time travel is impossible simply because time must flow in a linear manner and we have no control over it, or perhaps time is an illusion and time travel is irrelevant.

a woman stands among a crowd of people moving around her

Laws of physics

Since Albert Einstein’s theory of relativity — which describes the nature of time, space and gravity — is our most profound theory of time, we would like to think that time travel is forbidden by relativity. Unfortunately, one of his colleagues from the Institute for Advanced Study, Kurt Gödel, invented a universe in which time travel was not just possible, but the past and future were inextricably tangled.

We can actually design time machines , but most of these (in principle) successful proposals require negative energy , or negative mass, which does not seem to exist in our universe. If you drop a tennis ball of negative mass, it will fall upwards. This argument is rather unsatisfactory, since it explains why we cannot time travel in practice only by involving another idea — that of negative energy or mass — that we do not really understand.

Mathematical physicist Frank Tipler conceptualized a time machine that does not involve negative mass, but requires more energy than exists in the universe .

Time travel also violates the second law of thermodynamics , which states that entropy or randomness must always increase. Time can only move in one direction — in other words, you cannot unscramble an egg. More specifically, by travelling into the past we are going from now (a high entropy state) into the past, which must have lower entropy.

This argument originated with the English cosmologist Arthur Eddington , and is at best incomplete. Perhaps it stops you travelling into the past, but it says nothing about time travel into the future. In practice, it is just as hard for me to travel to next Thursday as it is to travel to last Thursday.

Resolving paradoxes

There is no doubt that if we could time travel freely, we run into the paradoxes. The best known is the “ grandfather paradox ”: one could hypothetically use a time machine to travel to the past and murder their grandfather before their father’s conception, thereby eliminating the possibility of their own birth. Logically, you cannot both exist and not exist.

Read more: Time travel could be possible, but only with parallel timelines

Kurt Vonnegut’s anti-war novel Slaughterhouse-Five , published in 1969, describes how to evade the grandfather paradox. If free will simply does not exist, it is not possible to kill one’s grandfather in the past, since he was not killed in the past. The novel’s protagonist, Billy Pilgrim, can only travel to other points on his world line (the timeline he exists in), but not to any other point in space-time, so he could not even contemplate killing his grandfather.

The universe in Slaughterhouse-Five is consistent with everything we know. The second law of thermodynamics works perfectly well within it and there is no conflict with relativity. But it is inconsistent with some things we believe in, like free will — you can observe the past, like watching a movie, but you cannot interfere with the actions of people in it.

Could we allow for actual modifications of the past, so that we could go back and murder our grandfather — or Hitler ? There are several multiverse theories that suppose that there are many timelines for different universes. This is also an old idea: in Charles Dickens’ A Christmas Carol , Ebeneezer Scrooge experiences two alternative timelines, one of which leads to a shameful death and the other to happiness.

Time is a river

Roman emperor Marcus Aurelius wrote that:

“ Time is like a river made up of the events which happen , and a violent stream; for as soon as a thing has been seen, it is carried away, and another comes in its place, and this will be carried away too.”

We can imagine that time does flow past every point in the universe, like a river around a rock. But it is difficult to make the idea precise. A flow is a rate of change — the flow of a river is the amount of water that passes a specific length in a given time. Hence if time is a flow, it is at the rate of one second per second, which is not a very useful insight.

Theoretical physicist Stephen Hawking suggested that a “ chronology protection conjecture ” must exist, an as-yet-unknown physical principle that forbids time travel. Hawking’s concept originates from the idea that we cannot know what goes on inside a black hole, because we cannot get information out of it. But this argument is redundant: we cannot time travel because we cannot time travel!

Researchers are investigating a more fundamental theory, where time and space “emerge” from something else. This is referred to as quantum gravity , but unfortunately it does not exist yet.

So is time travel possible? Probably not, but we don’t know for sure!

  • Time travel
  • Stephen Hawking
  • Albert Einstein
  • Listen to this article
  • Time travel paradox
  • Arthur Eddington

is time travel easy

Project Offier - Diversity & Inclusion

is time travel easy

Senior Lecturer - Earth System Science

is time travel easy

Sydney Horizon Educators (Identified)

is time travel easy

Deputy Social Media Producer

is time travel easy

Associate Professor, Occupational Therapy

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Time Travel and Modern Physics

Time travel has been a staple of science fiction. With the advent of general relativity it has been entertained by serious physicists. But, especially in the philosophy literature, there have been arguments that time travel is inherently paradoxical. The most famous paradox is the grandfather paradox: you travel back in time and kill your grandfather, thereby preventing your own existence. To avoid inconsistency some circumstance will have to occur which makes you fail in this attempt to kill your grandfather. Doesn’t this require some implausible constraint on otherwise unrelated circumstances? We examine such worries in the context of modern physics.

1. Paradoxes Lost?

2. topology and constraints, 3. the general possibility of time travel in general relativity, 4. two toy models, 5. slightly more realistic models of time travel, 6. the possibility of time travel redux, 7. even if there are constraints, so what, 8. computational models, 9. quantum mechanics to the rescue, 10. conclusions, other internet resources, related entries.

  • Supplement: Remarks and Limitations on the Toy Models

Modern physics strips away many aspects of the manifest image of time. Time as it appears in the equations of classical mechanics has no need for a distinguished present moment, for example. Relativity theory leads to even sharper contrasts. It replaces absolute simultaneity, according to which it is possible to unambiguously determine the time order of distant events, with relative simultaneity: extending an “instant of time” throughout space is not unique, but depends on the state of motion of an observer. More dramatically, in general relativity the mathematical properties of time (or better, of spacetime)—its topology and geometry—depend upon how matter is arranged rather than being fixed once and for all. So physics can be, and indeed has to be, formulated without treating time as a universal, fixed background structure. Since general relativity represents gravity through spacetime geometry, the allowed geometries must be as varied as the ways in which matter can be arranged. Alongside geometrical models used to describe the solar system, black holes, and much else, the scope of variation extends to include some exotic structures unlike anything astrophysicists have observed. In particular, there are spacetime geometries with curves that loop back on themselves: closed timelike curves (CTCs), which describe the possible trajectory of an observer who returns exactly back to their earlier state—without any funny business, such as going faster than the speed of light. These geometries satisfy the relevant physical laws, the equations of general relativity, and in that sense time travel is physically possible.

Yet circular time generates paradoxes, familiar from science fiction stories featuring time travel: [ 1 ]

  • Consistency: Kurt plans to murder his own grandfather Adolph, by traveling along a CTC to an appropriate moment in the past. He is an able marksman, and waits until he has a clear shot at grandpa. Normally he would not miss. Yet if he succeeds, there is no way that he will then exist to plan and carry out the mission. Kurt pulls the trigger: what can happen?
  • Underdetermination: Suppose that Kurt first travels back in order to give his earlier self a copy of How to Build a Time Machine. This is the same book that allows him to build a time machine, which he then carries with him on his journey to the past. Who wrote the book?
  • Easy Knowledge: A fan of classical music enhances their computer with a circuit that exploits a CTC. This machine efficiently solves problems at a higher level of computational complexity than conventional computers, leading (among other things) to finding the smallest circuits that can generate Bach’s oeuvre—and to compose new pieces in the same style. Such easy knowledge is at odds with our understanding of our epistemic predicament. (This third paradox has not drawn as much attention.)

The first two paradoxes were once routinely taken to show that solutions with CTCs should be rejected—with charges varying from violating logic, to being “physically unreasonable”, to undermining the notion of free will. Closer analysis of the paradoxes has largely reversed this consensus. Physicists have discovered many solutions with CTCs and have explored their properties in pursuing foundational questions, such as whether physics is compatible with the idea of objective temporal passage (starting with Gödel 1949). Philosophers have also used time travel scenarios to probe questions about, among other things, causation, modality, free will, and identity (see, e.g., Earman 1972 and Lewis’s seminal 1976 paper).

We begin below with Consistency , turning to the other paradoxes in later sections. A standard, stone-walling response is to insist that the past cannot be changed, as a matter of logic, even by a time traveler (e.g., Gödel 1949, Clarke 1977, Horwich 1987). Adolph cannot both die and survive, as a matter of logic, so any scheme to alter the past must fail. In many of the best time travel fictions, the actions of a time traveler are constrained in novel and unexpected ways. Attempts to change the past fail, and they fail, often tragically, in just such a way that they set the stage for the time traveler’s self-defeating journey. The first question is whether there is an analog of the consistent story when it comes to physics in the presence of CTCs. As we will see, there is a remarkable general argument establishing the existence of consistent solutions. Yet a second question persists: why can’t time-traveling Kurt kill his own grandfather? Doesn’t the necessity of failures to change the past put unusual and unexpected constraints on time travelers, or objects that move along CTCs? The same argument shows that there are in fact no constraints imposed by the existence of CTCs, in some cases. After discussing this line of argument, we will turn to the palatability and further implications of such constraints if they are required, and then turn to the implications of quantum mechanics.

Wheeler and Feynman (1949) were the first to claim that the fact that nature is continuous could be used to argue that causal influences from later events to earlier events, as are made possible by time travel, will not lead to paradox without the need for any constraints. Maudlin (1990) showed how to make their argument precise and more general, and argued that nonetheless it was not completely general.

Imagine the following set-up. We start off having a camera with a black and white film ready to take a picture of whatever comes out of the time machine. An object, in fact a developed film, comes out of the time machine. We photograph it, and develop the film. The developed film is subsequently put in the time machine, and set to come out of the time machine at the time the picture is taken. This surely will create a paradox: the developed film will have the opposite distribution of black, white, and shades of gray, from the object that comes out of the time machine. For developed black and white films (i.e., negatives) have the opposite shades of gray from the objects they are pictures of. But since the object that comes out of the time machine is the developed film itself it we surely have a paradox.

However, it does not take much thought to realize that there is no paradox here. What will happen is that a uniformly gray picture will emerge, which produces a developed film that has exactly the same uniform shade of gray. No matter what the sensitivity of the film is, as long as the dependence of the brightness of the developed film depends in a continuous manner on the brightness of the object being photographed, there will be a shade of gray that, when photographed, will produce exactly the same shade of gray on the developed film. This is the essence of Wheeler and Feynman’s idea. Let us first be a bit more precise and then a bit more general.

For simplicity let us suppose that the film is always a uniform shade of gray (i.e., at any time the shade of gray does not vary by location on the film). The possible shades of gray of the film can then be represented by the (real) numbers from 0, representing pure black, to 1, representing pure white.

Let us now distinguish various stages in the chronological order of the life of the film. In stage \(S_1\) the film is young; it has just been placed in the camera and is ready to be exposed. It is then exposed to the object that comes out of the time machine. (That object in fact is a later stage of the film itself). By the time we come to stage \(S_2\) of the life of the film, it has been developed and is about to enter the time machine. Stage \(S_3\) occurs just after it exits the time machine and just before it is photographed. Stage \(S_4\) occurs after it has been photographed and before it starts fading away. Let us assume that the film starts out in stage \(S_1\) in some uniform shade of gray, and that the only significant change in the shade of gray of the film occurs between stages \(S_1\) and \(S_2\). During that period it acquires a shade of gray that depends on the shade of gray of the object that was photographed. In other words, the shade of gray that the film acquires at stage \(S_2\) depends on the shade of gray it has at stage \(S_3\). The influence of the shade of gray of the film at stage \(S_3\), on the shade of gray of the film at stage \(S_2\), can be represented as a mapping, or function, from the real numbers between 0 and 1 (inclusive), to the real numbers between 0 and 1 (inclusive). Let us suppose that the process of photography is such that if one imagines varying the shade of gray of an object in a smooth, continuous manner then the shade of gray of the developed picture of that object will also vary in a smooth, continuous manner. This implies that the function in question will be a continuous function. Now any continuous function from the real numbers between 0 and 1 (inclusive) to the real numbers between 0 and 1 (inclusive) must map at least one number to itself. One can quickly convince oneself of this by graphing such functions. For one will quickly see that any continuous function \(f\) from \([0,1]\) to \([0,1]\) must intersect the line \(x=y\) somewhere, and thus there must be at least one point \(x\) such that \(f(x)=x\). Such points are called fixed points of the function. Now let us think about what such a fixed point represents. It represents a shade of gray such that, when photographed, it will produce a developed film with exactly that same shade of gray. The existence of such a fixed point implies a solution to the apparent paradox.

Let us now be more general and allow color photography. One can represent each possible color of an object (of uniform color) by the proportions of blue, green and red that make up that color. (This is why television screens can produce all possible colors.) Thus one can represent all possible colors of an object by three points on three orthogonal lines \(x, y\) and \(z\), that is to say, by a point in a three-dimensional cube. This cube is also known as the “Cartesian product” of the three line segments. Now, one can also show that any continuous map from such a cube to itself must have at least one fixed point. So color photography can not be used to create time travel paradoxes either!

Even more generally, consider some system \(P\) which, as in the above example, has the following life. It starts in some state \(S_1\), it interacts with an object that comes out of a time machine (which happens to be its older self), it travels back in time, it interacts with some object (which happens to be its younger self), and finally it grows old and dies. Let us assume that the set of possible states of \(P\) can be represented by a Cartesian product of \(n\) closed intervals of the reals, i.e., let us assume that the topology of the state-space of \(P\) is isomorphic to a finite Cartesian product of closed intervals of the reals. Let us further assume that the development of \(P\) in time, and the dependence of that development on the state of objects that it interacts with, is continuous. Then, by a well-known fixed point theorem in topology (see, e.g., Hocking & Young 1961: 273), no matter what the nature of the interaction is, and no matter what the initial state of the object is, there will be at least one state \(S_3\) of the older system (as it emerges from the time travel machine) that will influence the initial state \(S_1\) of the younger system (when it encounters the older system) so that, as the younger system becomes older, it develops exactly into state \(S_3\). Thus without imposing any constraints on the initial state \(S_1\) of the system \(P\), we have shown that there will always be perfectly ordinary, non-paradoxical, solutions, in which everything that happens, happens according to the usual laws of development. Of course, there is looped causation, hence presumably also looped explanation, but what do you expect if there is looped time?

Unfortunately, for the fan of time travel, a little reflection suggests that there are systems for which the needed fixed point theorem does not hold. Imagine, for instance, that we have a dial that can only rotate in a plane. We are going to put the dial in the time machine. Indeed we have decided that if we see the later stage of the dial come out of the time machine set at angle \(x\), then we will set the dial to \(x+90\), and throw it into the time machine. Now it seems we have a paradox, since the mapping that consists of a rotation of all points in a circular state-space by 90 degrees does not have a fixed point. And why wouldn’t some state-spaces have the topology of a circle?

However, we have so far not used another continuity assumption which is also a reasonable assumption. So far we have only made the following demand: the state the dial is in at stage \(S_2\) must be a continuous function of the state of the dial at stage \(S_3\). But, the state of the dial at stage \(S_2\) is arrived at by taking the state of the dial at stage \(S_1\), and rotating it over some angle. It is not merely the case that the effect of the interaction, namely the state of the dial at stage \(S_2\), should be a continuous function of the cause, namely the state of the dial at stage \(S_3\). It is additionally the case that path taken to get there, the way the dial is rotated between stages \(S_1\) and \(S_2\) must be a continuous function of the state at stage \(S_3\). And, rather surprisingly, it turns out that this can not be done. Let us illustrate what the problem is before going to a more general demonstration that there must be a fixed point solution in the dial case.

Forget time travel for the moment. Suppose that you and I each have a watch with a single dial neither of which is running. My watch is set at 12. You are going to announce what your watch is set at. My task is going to be to adjust my watch to yours no matter what announcement you make. And my actions should have a continuous (single valued) dependence on the time that you announce. Surprisingly, this is not possible! For instance, suppose that if you announce “12”, then I achieve that setting on my watch by doing nothing. Now imagine slowly and continuously increasing the announced times, starting at 12. By continuity, I must achieve each of those settings by rotating my dial to the right. If at some point I switch and achieve the announced goal by a rotation of my dial to the left, I will have introduced a discontinuity in my actions, a discontinuity in the actions that I take as a function of the announced angle. So I will be forced, by continuity, to achieve every announcement by rotating the dial to the right. But, this rotation to the right will have to be abruptly discontinued as the announcements grow larger and I eventually approach 12 again, since I achieved 12 by not rotating the dial at all. So, there will be a discontinuity at 12 at the latest. In general, continuity of my actions as a function of announced times can not be maintained throughout if I am to be able to replicate all possible settings. Another way to see the problem is that one can similarly reason that, as one starts with 12, and imagines continuously making the announced times earlier, one will be forced, by continuity, to achieve the announced times by rotating the dial to the left. But the conclusions drawn from the assumption of continuous increases and the assumption of continuous decreases are inconsistent. So we have an inconsistency following from the assumption of continuity and the assumption that I always manage to set my watch to your watch. So, a dial developing according to a continuous dynamics from a given initial state, can not be set up so as to react to a second dial, with which it interacts, in such a way that it is guaranteed to always end up set at the same angle as the second dial. Similarly, it can not be set up so that it is guaranteed to always end up set at 90 degrees to the setting of the second dial. All of this has nothing to do with time travel. However, the impossibility of such set ups is what prevents us from enacting the rotation by 90 degrees that would create paradox in the time travel setting.

Let us now give the positive result that with such dials there will always be fixed point solutions, as long as the dynamics is continuous. Let us call the state of the dial before it interacts with its older self the initial state of the dial. And let us call the state of the dial after it emerges from the time machine the final state of the dial. There is also an intermediate state of the dial, after it interacts with its older self and before it is put into the time machine. We can represent the initial or intermediate states of the dial, before it goes into the time machine, as an angle \(x\) in the horizontal plane and the final state of the dial, after it comes out of the time machine, as an angle \(y\) in the vertical plane. All possible \(\langle x,y\rangle\) pairs can thus be visualized as a torus with each \(x\) value picking out a vertical circular cross-section and each \(y\) picking out a point on that cross-section. See figure 1 .

Figure 1 [An extended description of figure 1 is in the supplement.]

Suppose that the dial starts at angle \(i\) which picks out vertical circle \(I\) on the torus. The initial angle \(i\) that the dial is at before it encounters its older self, and the set of all possible final angles that the dial can have when it emerges from the time machine is represented by the circle \(I\) on the torus (see figure 1 ). Given any possible angle of the emerging dial, the dial initially at angle \(i\) will develop to some other angle. One can picture this development by rotating each point on \(I\) in the horizontal direction by the relevant amount. Since the rotation has to depend continuously on the angle of the emerging dial, circle \(I\) during this development will deform into some loop \(L\) on the torus. Loop \(L\) thus represents all possible intermediate angles \(x\) that the dial is at when it is thrown into the time machine, given that it started at angle \(i\) and then encountered a dial (its older self) which was at angle \(y\) when it emerged from the time machine. We therefore have consistency if \(x=y\) for some \(x\) and \(y\) on loop \(L\). Now, let loop \(C\) be the loop which consists of all the points on the torus for which \(x=y\). Ring \(I\) intersects \(C\) at point \(\langle i,i\rangle\). Obviously any continuous deformation of \(I\) must still intersect \(C\) somewhere. So \(L\) must intersect \(C\) somewhere, say at \(\langle j,j\rangle\). But that means that no matter how the development of the dial starting at \(I\) depends on the angle of the emerging dial, there will be some angle for the emerging dial such that the dial will develop exactly into that angle (by the time it enters the time machine) under the influence of that emerging dial. This is so no matter what angle one starts with, and no matter how the development depends on the angle of the emerging dial. Thus even for a circular state-space there are no constraints needed other than continuity.

Unfortunately there are state-spaces that escape even this argument. Consider for instance a pointer that can be set to all values between 0 and 1, where 0 and 1 are not possible values. That is, suppose that we have a state-space that is isomorphic to an open set of real numbers. Now suppose that we have a machine that sets the pointer to half the value that the pointer is set at when it emerges from the time machine.

Figure 2 [An extended description of figure 2 is in the supplement.]

Suppose the pointer starts at value \(I\). As before we can represent the combination of this initial position and all possible final positions by the line \(I\). Under the influence of the pointer coming out of the time machine the pointer value will develop to a value that equals half the value of the final value that it encountered. We can represent this development as the continuous deformation of line \(I\) into line \(L\), which is indicated by the arrows in figure 2 . This development is fully continuous. Points \(\langle x,y\rangle\) on line \(I\) represent the initial position \(x=I\) of the (young) pointer, and the position \(y\) of the older pointer as it emerges from the time machine. Points \(\langle x,y\rangle\) on line \(L\) represent the position \(x\) that the younger pointer should develop into, given that it encountered the older pointer emerging from the time machine set at position \(y\). Since the pointer is designed to develop to half the value of the pointer that it encounters, the line \(L\) corresponds to \(x=1/2 y\). We have consistency if there is some point such that it develops into that point, if it encounters that point. Thus, we have consistency if there is some point \(\langle x,y\rangle\) on line \(L\) such that \(x=y\). However, there is no such point: lines \(L\) and \(C\) do not intersect. Thus there is no consistent solution, despite the fact that the dynamics is fully continuous.

Of course if 0 were a possible value, \(L\) and \(C\) would intersect at 0. This is surprising and strange: adding one point to the set of possible values of a quantity here makes the difference between paradox and peace. One might be tempted to just add the extra point to the state-space in order to avoid problems. After all, one might say, surely no measurements could ever tell us whether the set of possible values includes that exact point or not. Unfortunately there can be good theoretical reasons for supposing that some quantity has a state-space that is open: the set of all possible speeds of massive objects in special relativity surely is an open set, since it includes all speeds up to, but not including, the speed of light. Quantities that have possible values that are not bounded also lead to counter examples to the presented fixed point argument. And it is not obvious to us why one should exclude such possibilities. So the argument that no constraints are needed is not fully general.

An interesting question of course is: exactly for which state-spaces must there be such fixed points? The arguments above depend on a well-known fixed point theorem (due to Schauder) that guarantees the existence of a fixed point for compact, convex state spaces. We do not know what subsequent extensions of this result imply regarding fixed points for a wider variety of systems, or whether there are other general results along these lines. (See Kutach 2003 for more on this issue.)

A further interesting question is whether this line of argument is sufficient to resolve Consistency (see also Dowe 2007). When they apply, these results establish the existence of a solution, such as the shade of uniform gray in the first example. But physicists routinely demand more than merely the existence of a solution, namely that solutions to the equations are stable—such that “small” changes of the initial state lead to “small” changes of the resulting trajectory. (Clarifying the two senses of “small” in this statement requires further work, specifying the relevant topology.) Stability in this sense underwrites the possibility of applying equations to real systems given our inability to fix initial states with indefinite precision. (See Fletcher 2020 for further discussion.) The fixed point theorems guarantee that for an initial state \(S_1\) there is a solution, but this solution may not be “close” to the solution for a nearby initial state, \(S'\). We are not aware of any proofs that the solutions guaranteed to exist by the fixed point theorems are also stable in this sense.

Time travel has recently been discussed quite extensively in the context of general relativity. General relativity places few constraints on the global structure of space and time. This flexibility leads to a possibility first described in print by Hermann Weyl:

Every world-point is the origin of the double-cone of the active future and the passive past [i.e., the two lobes of the light cone]. Whereas in the special theory of relativity these two portions are separated by an intervening region, it is certainly possible in the present case [i.e., general relativity] for the cone of the active future to overlap with that of the passive past; so that, in principle, it is possible to experience events now that will in part be an effect of my future resolves and actions. Moreover, it is not impossible for a world-line (in particular, that of my body), although it has a timelike direction at every point, to return to the neighborhood of a point which it has already once passed through. (Weyl 1918/1920 [1952: 274])

A time-like curve is simply a space-time trajectory such that the speed of light is never equaled or exceeded along this trajectory. Time-like curves represent possible trajectories of ordinary objects. In general relativity a curve that is everywhere timelike locally can nonetheless loop back on itself, forming a CTC. Weyl makes the point vividly in terms of the light cones: along such a curve, the future lobe of the light cone (the “active future”) intersects the past lobe of the light cone (the “passive past”). Traveling along such a curve one would never exceed the speed of light, and yet after a certain amount of (proper) time one would return to a point in space-time that one previously visited. Or, by staying close to such a CTC, one could come arbitrarily close to a point in space-time that one previously visited. General relativity, in a straightforward sense, allows time travel: there appear to be many space-times compatible with the fundamental equations of general relativity in which there are CTC’s. Space-time, for instance, could have a Minkowski metric everywhere, and yet have CTC’s everywhere by having the temporal dimension (topologically) rolled up as a circle. Or, one can have wormhole connections between different parts of space-time which allow one to enter “mouth \(A\)” of such a wormhole connection, travel through the wormhole, exit the wormhole at “mouth \(B\)” and re-enter “mouth \(A\)” again. CTCs can even arise when the spacetime is topologically \(\mathbb{R}^4\), due to the “tilting” of light cones produced by rotating matter (as in Gödel 1949’s spacetime).

General relativity thus appears to provide ample opportunity for time travel. Note that just because there are CTC’s in a space-time, this does not mean that one can get from any point in the space-time to any other point by following some future directed timelike curve—there may be insurmountable practical obstacles. In Gödel’s spacetime, it is the case that there are CTCs passing through every point in the spacetime. Yet these CTCs are not geodesics, so traversing them requires acceleration. Calculations of the minimal fuel required to travel along the appropriate curve should discourage any would-be time travelers (Malament 1984, 1985; Manchak 2011). But more generally CTCs may be confined to smaller regions; some parts of space-time can have CTC’s while other parts do not. Let us call the part of a space-time that has CTC’s the “time travel region” of that space-time, while calling the rest of that space-time the “normal region”. More precisely, the “time travel region” consists of all the space-time points \(p\) such that there exists a (non-zero length) timelike curve that starts at \(p\) and returns to \(p\). Now let us turn to examining space-times with CTC’s a bit more closely for potential problems.

In order to get a feeling for the sorts of implications that closed timelike curves can have, it may be useful to consider two simple models. In space-times with closed timelike curves the traditional initial value problem cannot be framed in the usual way. For it presupposes the existence of Cauchy surfaces, and if there are CTCs then no Cauchy surface exists. (A Cauchy surface is a spacelike surface such that every inextendable timelike curve crosses it exactly once. One normally specifies initial conditions by giving the conditions on such a surface.) Nonetheless, if the topological complexities of the manifold are appropriately localized, we can come quite close. Let us call an edgeless spacelike surface \(S\) a quasi-Cauchy surface if it divides the rest of the manifold into two parts such that

  • every point in the manifold can be connected by a timelike curve to \(S\), and
  • any timelike curve which connects a point in one region to a point in the other region intersects \(S\) exactly once.

It is obvious that a quasi-Cauchy surface must entirely inhabit the normal region of the space-time; if any point \(p\) of \(S\) is in the time travel region, then any timelike curve which intersects \(p\) can be extended to a timelike curve which intersects \(S\) near \(p\) again. In extreme cases of time travel, a model may have no normal region at all (e.g., Minkowski space-time rolled up like a cylinder in a time-like direction), in which case our usual notions of temporal precedence will not apply. But temporal anomalies like wormholes (and time machines) can be sufficiently localized to permit the existence of quasi-Cauchy surfaces.

Given a timelike orientation, a quasi-Cauchy surface unproblematically divides the manifold into its past (i.e., all points that can be reached by past-directed timelike curves from \(S)\) and its future (ditto mutatis mutandis ). If the whole past of \(S\) is in the normal region of the manifold, then \(S\) is a partial Cauchy surface : every inextendable timelike curve which exists to the past of \(S\) intersects \(S\) exactly once, but (if there is time travel in the future) not every inextendable timelike curve which exists to the future of \(S\) intersects \(S\). Now we can ask a particularly clear question: consider a manifold which contains a time travel region, but also has a partial Cauchy surface \(S\), such that all of the temporal funny business is to the future of \(S\). If all you could see were \(S\) and its past, you would not know that the space-time had any time travel at all. The question is: are there any constraints on the sort of data which can be put on \(S\) and continued to a global solution of the dynamics which are different from the constraints (if any) on the data which can be put on a Cauchy surface in a simply connected manifold and continued to a global solution? If there is time travel to our future, might we we able to tell this now, because of some implied oddity in the arrangement of present things?

It is not at all surprising that there might be constraints on the data which can be put on a locally space-like surface which passes through the time travel region: after all, we never think we can freely specify what happens on a space-like surface and on another such surface to its future, but in this case the surface at issue lies to its own future. But if there were particular constraints for data on a partial Cauchy surface then we would apparently need to have to rule out some sorts of otherwise acceptable states on \(S\) if there is to be time travel to the future of \(S\). We then might be able to establish that there will be no time travel in the future by simple inspection of the present state of the universe. As we will see, there is reason to suspect that such constraints on the partial Cauchy surface are non-generic. But we are getting ahead of ourselves: first let’s consider the effect of time travel on a very simple dynamics.

The simplest possible example is the Newtonian theory of perfectly elastic collisions among equally massive particles in one spatial dimension. The space-time is two-dimensional, so we can represent it initially as the Euclidean plane, and the dynamics is completely specified by two conditions. When particles are traveling freely, their world lines are straight lines in the space-time, and when two particles collide, they exchange momenta, so the collision looks like an “\(X\)” in space-time, with each particle changing its momentum at the impact. [ 2 ] The dynamics is purely local, in that one can check that a set of world-lines constitutes a model of the dynamics by checking that the dynamics is obeyed in every arbitrarily small region. It is also trivial to generate solutions from arbitrary initial data if there are no CTCs: given the initial positions and momenta of a set of particles, one simply draws a straight line from each particle in the appropriate direction and continues it indefinitely. Once all the lines are drawn, the worldline of each particle can be traced from collision to collision. The boundary value problem for this dynamics is obviously well-posed: any set of data at an instant yields a unique global solution, constructed by the method sketched above.

What happens if we change the topology of the space-time by hand to produce CTCs? The simplest way to do this is depicted in figure 3 : we cut and paste the space-time so it is no longer simply connected by identifying the line \(L-\) with the line \(L+\). Particles “going in” to \(L+\) from below “emerge” from \(L-\) , and particles “going in” to \(L-\) from below “emerge” from \(L+\).

Figure 3: Inserting CTCs by Cut and Paste. [An extended description of figure 3 is in the supplement.]

How is the boundary-value problem changed by this alteration in the space-time? Before the cut and paste, we can put arbitrary data on the simultaneity slice \(S\) and continue it to a unique solution. After the change in topology, \(S\) is no longer a Cauchy surface, since a CTC will never intersect it, but it is a partial Cauchy surface. So we can ask two questions. First, can arbitrary data on \(S\) always be continued to a global solution? Second, is that solution unique? If the answer to the first question is \(no\), then we have a backward-temporal constraint: the existence of the region with CTCs places constraints on what can happen on \(S\) even though that region lies completely to the future of \(S\). If the answer to the second question is \(no\), then we have an odd sort of indeterminism, analogous to the unwritten book: the complete physical state on \(S\) does not determine the physical state in the future, even though the local dynamics is perfectly deterministic and even though there is no other past edge to the space-time region in \(S\)’s future (i.e., there is nowhere else for boundary values to come from which could influence the state of the region).

In this case the answer to the first question is yes and to the second is no : there are no constraints on the data which can be put on \(S\), but those data are always consistent with an infinitude of different global solutions. The easy way to see that there always is a solution is to construct the minimal solution in the following way. Start drawing straight lines from \(S\) as required by the initial data. If a line hits \(L-\) from the bottom, just continue it coming out of the top of \(L+\) in the appropriate place, and if a line hits \(L+\) from the bottom, continue it emerging from \(L-\) at the appropriate place. Figure 4 represents the minimal solution for a single particle which enters the time-travel region from the left:

Figure 4: The Minimal Solution. [An extended description of figure 4 is in the supplement.]

The particle “travels back in time” three times. It is obvious that this minimal solution is a global solution, since the particle always travels inertially.

But the same initial state on \(S\) is also consistent with other global solutions. The new requirement imposed by the topology is just that the data going into \(L+\) from the bottom match the data coming out of \(L-\) from the top, and the data going into \(L-\) from the bottom match the data coming out of \(L+\) from the top. So we can add any number of vertical lines connecting \(L-\) and \(L+\) to a solution and still have a solution. For example, adding a few such lines to the minimal solution yields:

Figure 5: A Non-Minimal Solution. [An extended description of figure 5 is in the supplement.]

The particle now collides with itself twice: first before it reaches \(L+\) for the first time, and again shortly before it exits the CTC region. From the particle’s point of view, it is traveling to the right at a constant speed until it hits an older version of itself and comes to rest. It remains at rest until it is hit from the right by a younger version of itself, and then continues moving off, and the same process repeats later. It is clear that this is a global model of the dynamics, and that any number of distinct models could be generating by varying the number and placement of vertical lines.

Knowing the data on \(S\), then, gives us only incomplete information about how things will go for the particle. We know that the particle will enter the CTC region, and will reach \(L+\), we know that it will be the only particle in the universe, we know exactly where and with what speed it will exit the CTC region. But we cannot determine how many collisions the particle will undergo (if any), nor how long (in proper time) it will stay in the CTC region. If the particle were a clock, we could not predict what time it would indicate when exiting the region. Furthermore, the dynamics gives us no handle on what to think of the various possibilities: there are no probabilities assigned to the various distinct possible outcomes.

Changing the topology has changed the mathematics of the situation in two ways, which tend to pull in opposite directions. On the one hand, \(S\) is no longer a Cauchy surface, so it is perhaps not surprising that data on \(S\) do not suffice to fix a unique global solution. But on the other hand, there is an added constraint: data “coming out” of \(L-\) must exactly match data “going in” to \(L+\), even though what comes out of \(L-\) helps to determine what goes into \(L+\). This added consistency constraint tends to cut down on solutions, although in this case the additional constraint is more than outweighed by the freedom to consider various sorts of data on \({L+}/{L-}\).

The fact that the extra freedom outweighs the extra constraint also points up one unexpected way that the supposed paradoxes of time travel may be overcome. Let’s try to set up a paradoxical situation using the little closed time loop above. If we send a single particle into the loop from the left and do nothing else, we know exactly where it will exit the right side of the time travel region. Now suppose we station someone at the other side of the region with the following charge: if the particle should come out on the right side, the person is to do something to prevent the particle from going in on the left in the first place. In fact, this is quite easy to do: if we send a particle in from the right, it seems that it can exit on the left and deflect the incoming left-hand particle.

Carrying on our reflection in this way, we further realize that if the particle comes out on the right, we might as well send it back in order to deflect itself from entering in the first place. So all we really need to do is the following: set up a perfectly reflecting particle mirror on the right-hand side of the time travel region, and launch the particle from the left so that— if nothing interferes with it —it will just barely hit \(L+\). Our paradox is now apparently complete. If, on the one hand, nothing interferes with the particle it will enter the time-travel region on the left, exit on the right, be reflected from the mirror, re-enter from the right, and come out on the left to prevent itself from ever entering. So if it enters, it gets deflected and never enters. On the other hand, if it never enters then nothing goes in on the left, so nothing comes out on the right, so nothing is reflected back, and there is nothing to deflect it from entering. So if it doesn’t enter, then there is nothing to deflect it and it enters. If it enters, then it is deflected and doesn’t enter; if it doesn’t enter then there is nothing to deflect it and it enters: paradox complete.

But at least one solution to the supposed paradox is easy to construct: just follow the recipe for constructing the minimal solution, continuing the initial trajectory of the particle (reflecting it the mirror in the obvious way) and then read of the number and trajectories of the particles from the resulting diagram. We get the result of figure 6 :

Figure 6: Resolving the “Paradox”. [An extended description of figure 6 is in the supplement.]

As we can see, the particle approaching from the left never reaches \(L+\): it is deflected first by a particle which emerges from \(L-\). But it is not deflected by itself , as the paradox suggests, it is deflected by another particle. Indeed, there are now four particles in the diagram: the original particle and three particles which are confined to closed time-like curves. It is not the leftmost particle which is reflected by the mirror, nor even the particle which deflects the leftmost particle; it is another particle altogether.

The paradox gets it traction from an incorrect presupposition. If there is only one particle in the world at \(S\) then there is only one particle which could participate in an interaction in the time travel region: the single particle would have to interact with its earlier (or later) self. But there is no telling what might come out of \(L-\): the only requirement is that whatever comes out must match what goes in at \(L+\). So if you go to the trouble of constructing a working time machine, you should be prepared for a different kind of disappointment when you attempt to go back and kill yourself: you may be prevented from entering the machine in the first place by some completely unpredictable entity which emerges from it. And once again a peculiar sort of indeterminism appears: if there are many self-consistent things which could prevent you from entering, there is no telling which is even likely to materialize. This is just like the case of the unwritten book: the book is never written, so nothing determines what fills its pages.

So when the freedom to put data on \(L-\) outweighs the constraint that the same data go into \(L+\), instead of paradox we get an embarrassment of riches: many solution consistent with the data on \(S\), or many possible books. To see a case where the constraint “outweighs” the freedom, we need to construct a very particular, and frankly artificial, dynamics and topology. Consider the space of all linear dynamics for a scalar field on a lattice. (The lattice can be though of as a simple discrete space-time.) We will depict the space-time lattice as a directed graph. There is to be a scalar field defined at every node of the graph, whose value at a given node depends linearly on the values of the field at nodes which have arrows which lead to it. Each edge of the graph can be assigned a weighting factor which determines how much the field at the input node contributes to the field at the output node. If we name the nodes by the letters a , b , c , etc., and the edges by their endpoints in the obvious way, then we can label the weighting factors by the edges they are associated with in an equally obvious way.

Suppose that the graph of the space-time lattice is acyclic , as in figure 7 . (A graph is Acyclic if one can not travel in the direction of the arrows and go in a loop.)

Figure 7: An Acyclic Lattice. [An extended description of figure 7 is in the supplement.]

It is easy to regard a set of nodes as the analog of a Cauchy surface, e.g., the set \(\{a, b, c\}\), and it is obvious if arbitrary data are put on those nodes the data will generate a unique solution in the future. [ 3 ] If the value of the field at node \(a\) is 3 and at node \(b\) is 7, then its value at node \(d\) will be \(3W_{ad}\) and its value at node \(e\) will be \(3W_{ae} + 7W_{be}\). By varying the weighting factors we can adjust the dynamics, but in an acyclic graph the future evolution of the field will always be unique.

Let us now again artificially alter the topology of the lattice to admit CTCs, so that the graph now is cyclic. One of the simplest such graphs is depicted in figure 8 : there are now paths which lead from \(z\) back to itself, e.g., \(z\) to \(y\) to \(z\).

Figure 8: Time Travel on a Lattice. [An extended description of figure 8 is in the supplement.]

Can we now put arbitrary data on \(v\) and \(w\), and continue that data to a global solution? Will the solution be unique?

In the generic case, there will be a solution and the solution will be unique. The equations for the value of the field at \(x, y\), and \(z\) are:

Solving these equations for \(z\) yields

which gives a unique value for \(z\) in the generic case. But looking at the space of all possible dynamics for this lattice (i.e., the space of all possible weighting factors), we find a singularity in the case where \(1-W_{zx}W_{xz} - W_{zy}W_{yz} = 0\). If we choose weighting factors in just this way, then arbitrary data at \(v\) and \(w\) cannot be continued to a global solution. Indeed, if the scalar field is everywhere non-negative, then this particular choice of dynamics puts ironclad constraints on the value of the field at \(v\) and \(w\): the field there must be zero (assuming \(W_{vx}\) and \(W_{wy}\) to be non-zero), and similarly all nodes in their past must have field value zero. If the field can take negative values, then the values at \(v\) and \(w\) must be so chosen that \(vW_{vx}W_{xz} = -wW_{wy}W_{yz}\). In either case, the field values at \(v\) and \(w\) are severely constrained by the existence of the CTC region even though these nodes lie completely to the past of that region. It is this sort of constraint which we find to be unlike anything which appears in standard physics.

Our toy models suggest three things. The first is that it may be impossible to prove in complete generality that arbitrary data on a partial Cauchy surface can always be continued to a global solution: our artificial case provides an example where it cannot. The second is that such odd constraints are not likely to be generic: we had to delicately fine-tune the dynamics to get a problem. The third is that the opposite problem, namely data on a partial Cauchy surface being consistent with many different global solutions, is likely to be generic: we did not have to do any fine-tuning to get this result.

This third point leads to a peculiar sort of indeterminism, illustrated by the case of the unwritten book: the entire state on \(S\) does not determine what will happen in the future even though the local dynamics is deterministic and there are no other “edges” to space-time from which data could influence the result. What happens in the time travel region is constrained but not determined by what happens on \(S\), and the dynamics does not even supply any probabilities for the various possibilities. The example of the photographic negative discussed in section 2, then, seems likely to be unusual, for in that case there is a unique fixed point for the dynamics, and the set-up plus the dynamical laws determine the outcome. In the generic case one would rather expect multiple fixed points, with no room for anything to influence, even probabilistically, which would be realized. (See the supplement on

Remarks and Limitations on the Toy Models .

It is ironic that time travel should lead generically not to contradictions or to constraints (in the normal region) but to underdetermination of what happens in the time travel region by what happens everywhere else (an underdetermination tied neither to a probabilistic dynamics nor to a free edge to space-time). The traditional objection to time travel is that it leads to contradictions: there is no consistent way to complete an arbitrarily constructed story about how the time traveler intends to act. Instead, though, it appears that the more significant problem is underdetermination: the story can be consistently completed in many different ways.

Echeverria, Klinkhammer, and Thorne (1991) considered the case of 3-dimensional single hard spherical ball that can go through a single time travel wormhole so as to collide with its younger self.

Figure 9 [An extended description of figure 9 is in the supplement.]

The threat of paradox in this case arises in the following form. Consider the initial trajectory of a ball as it approaches the time travel region. For some initial trajectories, the ball does not undergo a collision before reaching mouth 1, but upon exiting mouth 2 it will collide with its earlier self. This leads to a contradiction if the collision is strong enough to knock the ball off its trajectory and deflect it from entering mouth 1. Of course, the Wheeler-Feynman strategy is to look for a “glancing blow” solution: a collision which will produce exactly the (small) deviation in trajectory of the earlier ball that produces exactly that collision. Are there always such solutions? [ 4 ]

Echeverria, Klinkhammer & Thorne found a large class of initial trajectories that have consistent “glancing blow” continuations, and found none that do not (but their search was not completely general). They did not produce a rigorous proof that every initial trajectory has a consistent continuation, but suggested that it is very plausible that every initial trajectory has a consistent continuation. That is to say, they have made it very plausible that, in the billiard ball wormhole case, the time travel structure of such a wormhole space-time does not result in constraints on states on spacelike surfaces in the non-time travel region.

In fact, as one might expect from our discussion in the previous section, they found the opposite problem from that of inconsistency: they found underdetermination. For a large class of initial trajectories there are multiple different consistent “glancing blow” continuations of that trajectory (many of which involve multiple wormhole traversals). For example, if one initially has a ball that is traveling on a trajectory aimed straight between the two mouths, then one obvious solution is that the ball passes between the two mouths and never time travels. But another solution is that the younger ball gets knocked into mouth 1 exactly so as to come out of mouth 2 and produce that collision. Echeverria et al. do not note the possibility (which we pointed out in the previous section) of the existence of additional balls in the time travel region. We conjecture (but have no proof) that for every initial trajectory of \(A\) there are some, and generically many, multiple-ball continuations.

Friedman, Morris, et al. (1990) examined the case of source-free non-self-interacting scalar fields traveling through such a time travel wormhole and found that no constraints on initial conditions in the non-time travel region are imposed by the existence of such time travel wormholes. In general there appear to be no known counter examples to the claim that in “somewhat realistic” time-travel space-times with a partial Cauchy surface there are no constraints imposed on the state on such a partial Cauchy surface by the existence of CTC’s. (See, e.g., Friedman & Morris 1991; Thorne 1994; Earman 1995; Earman, Smeenk, & Wüthrich 2009; and Dowe 2007.)

How about the issue of constraints in the time travel region \(T\)? Prima facie , constraints in such a region would not appear to be surprising. But one might still expect that there should be no constraints on states on a spacelike surface, provided one keeps the surface “small enough”. In the physics literature the following question has been asked: for any point \(p\) in \(T\), and any space-like surface \(S\) that includes \(p\) is there a neighborhood \(E\) of \(p\) in \(S\) such that any solution on \(E\) can be extended to a solution on the whole space-time? With respect to this question, there are some simple models in which one has this kind of extendability of local solutions to global ones, and some simple models in which one does not have such extendability, with no clear general pattern. The technical mathematical problems are amplified by the more conceptual problem of what it might mean to say that one could create a situation which forces the creation of closed timelike curves. (See, e.g., Yurtsever 1990; Friedman, Morris, et al. 1990; Novikov 1992; Earman 1995; and Earman, Smeenk, & Wüthrich 2009). What are we to think of all of this?

The toy models above all treat billiard balls, fields, and other objects propagating through a background spacetime with CTCs. Even if we can show that a consistent solution exists, there is a further question: what kind of matter and dynamics could generate CTCs to begin with? There are various solutions of Einstein’s equations with CTCs, but how do these exotic spacetimes relate to the models actually used in describing the world? In other words, what positive reasons might we have to take CTCs seriously as a feature of the actual universe, rather than an exotic possibility of primarily mathematical interest?

We should distinguish two different kinds of “possibility” that we might have in mind in posing such questions (following Stein 1970). First, we can consider a solution as a candidate cosmological model, describing the (large-scale gravitational degrees of freedom of the) entire universe. The case for ruling out spacetimes with CTCs as potential cosmological models strikes us as, surprisingly, fairly weak. Physicists used to simply rule out solutions with CTCs as unreasonable by fiat, due to the threat of paradoxes, which we have dismantled above. But it is also challenging to make an observational case. Observations tell us very little about global features, such as the existence of CTCs, because signals can only reach an observer from a limited region of spacetime, called the past light cone. Our past light cone—and indeed the collection of all the past light cones for possible observers in a given spacetime—can be embedded in spacetimes with quite different global features (Malament 1977, Manchak 2009). This undercuts the possibility of using observations to constrain global topology, including (among other things) ruling out the existence of CTCs.

Yet the case in favor of taking cosmological models with CTCs seriously is also not particularly strong. Some solutions used to describe black holes, which are clearly relevant in a variety of astrophysical contexts, include CTCs. But the question of whether the CTCs themselves play an essential representational role is subtle: the CTCs arise in the maximal extensions of these solutions, and can plausibly be regarded as extraneous to successful applications. Furthermore, many of the known solutions with CTCs have symmetries, raising the possibility that CTCs are not a stable or robust feature. Slight departures from symmetry may lead to a solution without CTCs, suggesting that the CTCs may be an artifact of an idealized model.

The second sense of possibility regards whether “reasonable” initial conditions can be shown to lead to, or not to lead to, the formation of CTCs. As with the toy models above, suppose that we have a partial Cauchy surface \(S\), such that all the temporal funny business lies to the future. Rather than simply assuming that there is a region with CTCs to the future, we can ask instead whether it is possible to create CTCs by manipulating matter in the initial, well-behaved region—that is, whether it is possible to build a time machine. Several physicists have pursued “chronology protection theorems” aiming to show that the dynamics of general relativity (or some other aspects of physics) rules this out, and to clarify why this is the case. The proof of such a theorem would justify neglecting solutions with CTCs as a source of insight into the nature of time in the actual world. But as of yet there are several partial results that do not fully settle the question. One further intriguing possibility is that even if general relativity by itself does protect chronology, it may not be possible to formulate a sensible theory describing matter and fields in solutions with CTCs. (See SEP entry on Time Machines; Smeenk and Wüthrich 2011 for more.)

There is a different question regarding the limitations of these toy models. The toy models and related examples show that there are consistent solutions for simple systems in the presence of CTCs. As usual we have made the analysis tractable by building toy models, selecting only a few dynamical degrees of freedom and tracking their evolution. But there is a large gap between the systems we have described and the time travel stories they evoke, with Kurt traveling along a CTC with murderous intentions. In particular, many features of the manifest image of time are tied to the thermodynamical properties of macroscopic systems. Rovelli (unpublished) considers a extremely simple system to illustrate the problem: can a clock move along a CTC? A clock consists of something in periodic motion, such as a pendulum bob, and something that counts the oscillations, such as an escapement mechanism. The escapement mechanism cannot work without friction; this requires dissipation and increasing entropy. For a clock that counts oscillations as it moves along a time-like trajectory, the entropy must be a monotonically increasing function. But that is obviously incompatible with the clock returning to precisely the same state at some future time as it completes a loop. The point generalizes, obviously, to imply that anything like a human, with memory and agency, cannot move along a CTC.

Since it is not obvious that one can rid oneself of all constraints in realistic models, let us examine the argument that time travel is implausible, and we should think it unlikely to exist in our world, in so far as it implies such constraints. The argument goes something like the following. In order to satisfy such constraints one needs some pre-established divine harmony between the global (time travel) structure of space-time and the distribution of particles and fields on space-like surfaces in it. But it is not plausible that the actual world, or any world even remotely like ours, is constructed with divine harmony as part of the plan. In fact, one might argue, we have empirical evidence that conditions in any spatial region can vary quite arbitrarily. So we have evidence that such constraints, whatever they are, do not in fact exist in our world. So we have evidence that there are no closed time-like lines in our world or one remotely like it. We will now examine this argument in more detail by presenting four possible responses, with counterresponses, to this argument.

Response 1. There is nothing implausible or new about such constraints. For instance, if the universe is spatially closed, there has to be enough matter to produce the needed curvature, and this puts constraints on the matter distribution on a space-like hypersurface. Thus global space-time structure can quite unproblematically constrain matter distributions on space-like hypersurfaces in it. Moreover we have no realistic idea what these constraints look like, so we hardly can be said to have evidence that they do not obtain.

Counterresponse 1. Of course there are constraining relations between the global structure of space-time and the matter in it. The Einstein equations relate curvature of the manifold to the matter distribution in it. But what is so strange and implausible about the constraints imposed by the existence of closed time-like curves is that these constraints in essence have nothing to do with the Einstein equations. When investigating such constraints one typically treats the particles and/or field in question as test particles and/or fields in a given space-time, i.e., they are assumed not to affect the metric of space-time in any way. In typical space-times without closed time-like curves this means that one has, in essence, complete freedom of matter distribution on a space-like hypersurface. (See response 2 for some more discussion of this issue). The constraints imposed by the possibility of time travel have a quite different origin and are implausible. In the ordinary case there is a causal interaction between matter and space-time that results in relations between global structure of space-time and the matter distribution in it. In the time travel case there is no such causal story to be told: there simply has to be some pre-established harmony between the global space-time structure and the matter distribution on some space-like surfaces. This is implausible.

Response 2. Constraints upon matter distributions are nothing new. For instance, Maxwell’s equations constrain electric fields \(\boldsymbol{E}\) on an initial surface to be related to the (simultaneous) charge density distribution \(\varrho\) by the equation \(\varrho = \text{div}(\boldsymbol{E})\). (If we assume that the \(E\) field is generated solely by the charge distribution, this conditions amounts to requiring that the \(E\) field at any point in space simply be the one generated by the charge distribution according to Coulomb’s inverse square law of electrostatics.) This is not implausible divine harmony. Such constraints can hold as a matter of physical law. Moreover, if we had inferred from the apparent free variation of conditions on spatial regions that there could be no such constraints we would have mistakenly inferred that \(\varrho = \text{div}(\boldsymbol{E})\) could not be a law of nature.

Counterresponse 2. The constraints imposed by the existence of closed time-like lines are of quite a different character from the constraint imposed by \(\varrho = \text{div}(\boldsymbol{E})\). The constraints imposed by \(\varrho = \text{div}(\boldsymbol{E})\) on the state on a space-like hypersurface are:

  • local constraints (i.e., to check whether the constraint holds in a region you just need to see whether it holds at each point in the region),
  • quite independent of the global space-time structure,
  • quite independent of how the space-like surface in question is embedded in a given space-time, and
  • very simply and generally stateable.

On the other hand, the consistency constraints imposed by the existence of closed time-like curves (i) are not local, (ii) are dependent on the global structure of space-time, (iii) depend on the location of the space-like surface in question in a given space-time, and (iv) appear not to be simply stateable other than as the demand that the state on that space-like surface embedded in such and such a way in a given space-time, do not lead to inconsistency. On some views of laws (e.g., David Lewis’ view) this plausibly implies that such constraints, even if they hold, could not possibly be laws. But even if one does not accept such a view of laws, one could claim that the bizarre features of such constraints imply that it is implausible that such constraints hold in our world or in any world remotely like ours.

Response 3. It would be strange if there are constraints in the non-time travel region. It is not strange if there are constraints in the time travel region. They should be explained in terms of the strange, self-interactive, character of time travel regions. In this region there are time-like trajectories from points to themselves. Thus the state at such a point, in such a region, will, in a sense, interact with itself. It is a well-known fact that systems that interact with themselves will develop into an equilibrium state, if there is such an equilibrium state, or else will develop towards some singularity. Normally, of course, self-interaction isn’t true instantaneous self-interaction, but consists of a feed-back mechanism that takes time. But in time travel regions something like true instantaneous self-interaction occurs. This explains why constraints on states occur in such time travel regions: the states “ ab initio ” have to be “equilibrium states”. Indeed in a way this also provides some picture of why indeterminism occurs in time travel regions: at the onset of self-interaction states can fork into different equi-possible equilibrium states.

Counterresponse 3. This is explanation by woolly analogy. It all goes to show that time travel leads to such bizarre consequences that it is unlikely that it occurs in a world remotely like ours.

Response 4. All of the previous discussion completely misses the point. So far we have been taking the space-time structure as given, and asked the question whether a given time travel space-time structure imposes constraints on states on (parts of) space-like surfaces. However, space-time and matter interact. Suppose that one is in a space-time with closed time-like lines, such that certain counterfactual distributions of matter on some neighborhood of a point \(p\) are ruled out if one holds that space-time structure fixed. One might then ask

Why does the actual state near \(p\) in fact satisfy these constraints? By what divine luck or plan is this local state compatible with the global space-time structure? What if conditions near \(p\) had been slightly different?

And one might take it that the lack of normal answers to these questions indicates that it is very implausible that our world, or any remotely like it, is such a time travel universe. However the proper response to these question is the following. There are no constraints in any significant sense. If they hold they hold as a matter of accidental fact, not of law. There is no more explanation of them possible than there is of any contingent fact. Had conditions in a neighborhood of \(p\) been otherwise, the global structure of space-time would have been different. So what? The only question relevant to the issue of constraints is whether an arbitrary state on an arbitrary spatial surface \(S\) can always be embedded into a space-time such that that state on \(S\) consistently extends to a solution on the entire space-time.

But we know the answer to that question. A well-known theorem in general relativity says the following: any initial data set on a three dimensional manifold \(S\) with positive definite metric has a unique embedding into a maximal space-time in which \(S\) is a Cauchy surface (see, e.g., Geroch & Horowitz 1979: 284 for more detail), i.e., there is a unique largest space-time which has \(S\) as a Cauchy surface and contains a consistent evolution of the initial value data on \(S\). Now since \(S\) is a Cauchy surface this space-time does not have closed time like curves. But it may have extensions (in which \(S\) is not a Cauchy surface) which include closed timelike curves, indeed it may be that any maximal extension of it would include closed timelike curves. (This appears to be the case for extensions of states on certain surfaces of Taub-NUT space-times. See Earman, Smeenk, & Wüthrich 2009). But these extensions, of course, will be consistent. So properly speaking, there are no constraints on states on space-like surfaces. Nonetheless the space-time in which these are embedded may or may not include closed time-like curves.

Counterresponse 4. This, in essence, is the stonewalling answer which we indicated in section 1. However, whether or not you call the constraints imposed by a given space-time on distributions of matter on certain space-like surfaces “genuine constraints”, whether or not they can be considered lawlike, and whether or not they need to be explained, the existence of such constraints can still be used to argue that time travel worlds are so bizarre that it is implausible that our world or any world remotely like ours is a time travel world.

Suppose that one is in a time travel world. Suppose that given the global space-time structure of this world, there are constraints imposed upon, say, the state of motion of a ball on some space-like surface when it is treated as a test particle, i.e., when it is assumed that the ball does not affect the metric properties of the space-time it is in. (There is lots of other matter that, via the Einstein equation, corresponds exactly to the curvature that there is everywhere in this time travel worlds.) Now a real ball of course does have some effect on the metric of the space-time it is in. But let us consider a ball that is so small that its effect on the metric is negligible. Presumably it will still be the case that certain states of this ball on that space-like surface are not compatible with the global time travel structure of this universe.

This means that the actual distribution of matter on such a space-like surface can be extended into a space-time with closed time-like lines, but that certain counterfactual distributions of matter on this space-like surface can not be extended into the same space-time. But note that the changes made in the matter distribution (when going from the actual to the counterfactual distribution) do not in any non-negligible way affect the metric properties of the space-time. (Recall that the changes only effect test particles.) Thus the reason why the global time travel properties of the counterfactual space-time have to be significantly different from the actual space-time is not that there are problems with metric singularities or alterations in the metric that force significant global changes when we go to the counterfactual matter distribution. The reason that the counterfactual space-time has to be different is that in the counterfactual world the ball’s initial state of motion starting on the space-like surface, could not “meet up” in a consistent way with its earlier self (could not be consistently extended) if we were to let the global structure of the counterfactual space-time be the same as that of the actual space-time. Now, it is not bizarre or implausible that there is a counterfactual dependence of manifold structure, even of its topology, on matter distributions on spacelike surfaces. For instance, certain matter distributions may lead to singularities, others may not. We may indeed in some sense have causal power over the topology of the space-time we live in. But this power normally comes via the Einstein equations. But it is bizarre to think that there could be a counterfactual dependence of global space-time structure on the arrangement of certain tiny bits of matter on some space-like surface, where changes in that arrangement by assumption do not affect the metric anywhere in space-time in any significant way . It is implausible that we live in such a world, or that a world even remotely like ours is like that.

Let us illustrate this argument in a different way by assuming that wormhole time travel imposes constraints upon the states of people prior to such time travel, where the people have so little mass/energy that they have negligible effect, via the Einstein equation, on the local metric properties of space-time. Do you think it more plausible that we live in a world where wormhole time travel occurs but it only occurs when people’s states are such that these local states happen to combine with time travel in such a way that nobody ever succeeds in killing their younger self, or do you think it more plausible that we are not in a wormhole time travel world? [ 5 ]

An alternative approach to time travel (initiated by Deutsch 1991) abstracts away from the idealized toy models described above. [ 6 ] This computational approach considers instead the evolution of bits (simple physical systems with two discrete states) through a network of interactions, which can be represented by a circuit diagram with gates corresponding to the interactions. Motivated by the possibility of CTCs, Deutsch proposed adding a new kind of channel that connects the output of a given gate back to its input —in essence, a backwards-time step. More concretely, given a gate that takes \(n\) bits as input, we can imagine taking some number \(i \lt n\) of these bits through a channel that loops back and then do double-duty as inputs. Consistency requires that the state of these \(i\) bits is the same for output and input. (We will consider an illustration of this kind of system in the next section.) Working through examples of circuit diagrams with a CTC channel leads to similar treatments of Consistency and Underdetermination as the discussion above (see, e.g., Wallace 2012: § 10.6). But the approach offers two new insights (both originally due to Deutsch): the Easy Knowledge paradox, and a particularly clear extension to time travel in quantum mechanics.

A computer equipped with a CTC channel can exploit the need to find consistent evolution to solve remarkably hard problems. (This is quite different than the first idea that comes to mind to enhance computational power: namely to just devote more time to a computation, and then send the result back on the CTC to an earlier state.) The gate in a circuit incorporating a CTC implements a function from the input bits to the output bits, under the constraint that the output and input match the i bits going through the CTC channel. This requires, in effect, finding the fixed point of the relevant function. Given the generality of the model, there are few limits on the functions that could be implemented on the CTC circuit. Nature has to solve a hard computational problem just to ensure consistent evolution. This can then be extended to other complex computational problems—leading, more precisely, to solutions of NP -complete problems in polynomial time (see Aaronson 2013: Chapter 20 for an overview and further references). The limits imposed by computational complexity are an essential part of our epistemic situation, and computers with CTCs would radically change this.

We now turn to the application of the computational approach to the quantum physics of time travel (see Deutsch 1991; Deutsch & Lockwood 1994). By contrast with the earlier discussions of constraints in classical systems, they claim to show that time travel never imposes any constraints on the pre-time travel state of quantum systems. The essence of this account is as follows. [ 7 ]

A quantum system starts in state \(S_1\), interacts with its older self, after the interaction is in state \(S_2\), time travels while developing into state \(S_3\), then interacts with its younger self, and ends in state \(S_4\) (see figure 10 ).

Figure 10 [An extended description of figure 10 is in the supplement.]

Deutsch assumes that the set of possible states of this system are the mixed states, i.e., are represented by the density matrices over the Hilbert space of that system. Deutsch then shows that for any initial state \(S_1\), any unitary interaction between the older and younger self, and any unitary development during time travel, there is a consistent solution, i.e., there is at least one pair of states \(S_2\) and \(S_3\) such that when \(S_1\) interacts with \(S_3\) it will change to state \(S_2\) and \(S_2\) will then develop into \(S_3\). The states \(S_2, S_3\) and \(S_4\) will typically be not be pure states, i.e., will be non-trivial mixed states, even if \(S_1\) is pure. In order to understand how this leads to interpretational problems let us give an example. Consider a system that has a two dimensional Hilbert space with as a basis the states \(\vc{+}\) and \(\vc{-}\). Let us suppose that when state \(\vc{+}\) of the young system encounters state \(\vc{+}\) of the older system, they interact and the young system develops into state \(\vc{-}\) and the old system remains in state \(\vc{+}\). In obvious notation:

Similarly, suppose that:

Let us furthermore assume that there is no development of the state of the system during time travel, i.e., that \(\vc{+}_2\) develops into \(\vc{+}_3\), and that \(\vc{-}_2\) develops into \(\vc{-}_3\).

Now, if the only possible states of the system were \(\vc{+}\) and \(\vc{-}\) (i.e., if there were no superpositions or mixtures of these states), then there is a constraint on initial states: initial state \(\vc{+}_1\) is impossible. For if \(\vc{+}_1\) interacts with \(\vc{+}_3\) then it will develop into \(\vc{-}_2\), which, during time travel, will develop into \(\vc{-}_3\), which inconsistent with the assumed state \(\vc{+}_3\). Similarly if \(\vc{+}_1\) interacts with \(\vc{-}_3\) it will develop into \(\vc{+}_2\), which will then develop into \(\vc{+}_3\) which is also inconsistent. Thus the system can not start in state \(\vc{+}_1\).

But, says Deutsch, in quantum mechanics such a system can also be in any mixture of the states \(\vc{+}\) and \(\vc{-}\). Suppose that the older system, prior to the interaction, is in a state \(S_3\) which is an equal mixture of 50% \(\vc{+}_3\) and 50% \(\vc{-}_3\). Then the younger system during the interaction will develop into a mixture of 50% \(\vc{+}_2\) and 50% \(\vc{-}_2\), which will then develop into a mixture of 50% \(\vc{+}_3\) and 50% \(\vc{-}_3\), which is consistent! More generally Deutsch uses a fixed point theorem to show that no matter what the unitary development during interaction is, and no matter what the unitary development during time travel is, for any state \(S_1\) there is always a state \(S_3\) (which typically is not a pure state) which causes \(S_1\) to develop into a state \(S_2\) which develops into that state \(S_3\). Thus quantum mechanics comes to the rescue: it shows in all generality that no constraints on initial states are needed!

One might wonder why Deutsch appeals to mixed states: will superpositions of states \(\vc{+}\) and \(\vc{-}\) not suffice? Unfortunately such an idea does not work. Suppose again that the initial state is \(\vc{+}_1\). One might suggest that that if state \(S_3\) is

one will obtain a consistent development. For one might think that when initial state \(\vc{+}_1\) encounters the superposition

it will develop into superposition

and that this in turn will develop into

as desired. However this is not correct. For initial state \(\vc{+}_1\) when it encounters

will develop into the entangled state

In so far as one can speak of the state of the young system after this interaction, it is in the mixture of 50% \(\vc{+}_2\) and 50% \(\vc{-}_2\), not in the superposition

So Deutsch does need his recourse to mixed states.

This clarification of why Deutsch needs his mixtures does however indicate a serious worry about the simplifications that are part of Deutsch’s account. After the interaction the old and young system will (typically) be in an entangled state. Although for purposes of a measurement on one of the two systems one can say that this system is in a mixed state, one can not represent the full state of the two systems by specifying the mixed state of each separate part, as there are correlations between observables of the two systems that are not represented by these two mixed states, but are represented in the joint entangled state. But if there really is an entangled state of the old and young systems directly after the interaction, how is one to represent the subsequent development of this entangled state? Will the state of the younger system remain entangled with the state of the older system as the younger system time travels and the older system moves on into the future? On what space-like surfaces are we to imagine this total entangled state to be? At this point it becomes clear that there is no obvious and simple way to extend elementary non-relativistic quantum mechanics to space-times with closed time-like curves: we apparently need to characterize not just the entanglement between two systems, but entanglement relative to specific spacetime descriptions.

How does Deutsch avoid these complications? Deutsch assumes a mixed state \(S_3\) of the older system prior to the interaction with the younger system. He lets it interact with an arbitrary pure state \(S_1\) younger system. After this interaction there is an entangled state \(S'\) of the two systems. Deutsch computes the mixed state \(S_2\) of the younger system which is implied by this entangled state \(S'\). His demand for consistency then is just that this mixed state \(S_2\) develops into the mixed state \(S_3\). Now it is not at all clear that this is a legitimate way to simplify the problem of time travel in quantum mechanics. But even if we grant him this simplification there is a problem: how are we to understand these mixtures?

If we take an ignorance interpretation of mixtures we run into trouble. For suppose that we assume that in each individual case each older system is either in state \(\vc{+}_3\) or in state \(\vc{-}_3\) prior to the interaction. Then we regain our paradox. Deutsch instead recommends the following, many worlds, picture of mixtures. Suppose we start with state \(\vc{+}_1\) in all worlds. In some of the many worlds the older system will be in the \(\vc{+}_3\) state, let us call them A -worlds, and in some worlds, B -worlds, it will be in the \(\vc{-}_3\) state. Thus in A -worlds after interaction we will have state \(\vc{-}_2\) , and in B -worlds we will have state \(\vc{+}_2\). During time travel the \(\vc{-}_2\) state will remain the same, i.e., turn into state \(\vc{-}_3\), but the systems in question will travel from A -worlds to B -worlds. Similarly the \(\vc{+}\) \(_2\) states will travel from the B -worlds to the A -worlds, thus preserving consistency.

Now whatever one thinks of the merits of many worlds interpretations, and of this understanding of it applied to mixtures, in the end one does not obtain genuine time travel in Deutsch’s account. The systems in question travel from one time in one world to another time in another world, but no system travels to an earlier time in the same world. (This is so at least in the normal sense of the word “world”, the sense that one means when, for instance, one says “there was, and will be, only one Elvis Presley in this world.”) Thus, even if it were a reasonable view, it is not quite as interesting as it may have initially seemed. (See Wallace 2012 for a more sympathetic treatment, that explores several further implications of accepting time travel in conjunction with the many worlds interpretation.)

We close by acknowledging that Deutsch’s starting point—the claim that this computational model captures the essential features of quantum systems in a spacetime with CTCs—has been the subject of some debate. Several physicists have pursued a quite different treatment of evolution of quantum systems through CTC’s, based on considering the “post-selected” state (see Lloyd et al. 2011). Their motivations for implementing the consistency condition in terms of the post-selected state reflects a different stance towards quantum foundations. A different line of argument aims to determine whether Deutsch’s treatment holds as an appropriate limiting case of a more rigorous treatment, such as quantum field theory in curved spacetimes. For example, Verch (2020) establishes several results challenging the assumption that Deutsch’s treatment is tied to the presence of CTC’s, or that it is compatible with the entanglement structure of quantum fields.

What remains of the grandfather paradox in general relativistic time travel worlds is the fact that in some cases the states on edgeless spacelike surfaces are “overconstrained”, so that one has less than the usual freedom in specifying conditions on such a surface, given the time-travel structure, and in some cases such states are “underconstrained”, so that states on edgeless space-like surfaces do not determine what happens elsewhere in the way that they usually do, given the time travel structure. There can also be mixtures of those two types of cases. The extent to which states are overconstrained and/or underconstrained in realistic models is as yet unclear, though it would be very surprising if neither obtained. The extant literature has primarily focused on the problem of overconstraint, since that, often, either is regarded as a metaphysical obstacle to the possibility time travel, or as an epistemological obstacle to the plausibility of time travel in our world. While it is true that our world would be quite different from the way we normally think it is if states were overconstrained, underconstraint seems at least as bizarre as overconstraint. Nonetheless, neither directly rules out the possibility of time travel.

If time travel entailed contradictions then the issue would be settled. And indeed, most of the stories employing time travel in popular culture are logically incoherent: one cannot “change” the past to be different from what it was, since the past (like the present and the future) only occurs once. But if the only requirement demanded is logical coherence, then it seems all too easy. A clever author can devise a coherent time-travel scenario in which everything happens just once and in a consistent way. This is just too cheap: logical coherence is a very weak condition, and many things we take to be metaphysically impossible are logically coherent. For example, it involves no logical contradiction to suppose that water is not molecular, but if both chemistry and Kripke are right it is a metaphysical impossibility. We have been interested not in logical possibility but in physical possibility. But even so, our conditions have been relatively weak: we have asked only whether time-travel is consistent with the universal validity of certain fundamental physical laws and with the notion that the physical state on a surface prior to the time travel region be unconstrained. It is perfectly possible that the physical laws obey this condition, but still that time travel is not metaphysically possible because of the nature of time itself. Consider an analogy. Aristotle believed that water is homoiomerous and infinitely divisible: any bit of water could be subdivided, in principle, into smaller bits of water. Aristotle’s view contains no logical contradiction. It was certainly consistent with Aristotle’s conception of water that it be homoiomerous, so this was, for him, a conceptual possibility. But if chemistry is right, Aristotle was wrong both about what water is like and what is possible for it. It can’t be infinitely divided, even though no logical or conceptual analysis would reveal that.

Similarly, even if all of our consistency conditions can be met, it does not follow that time travel is physically possible, only that some specific physical considerations cannot rule it out. The only serious proof of the possibility of time travel would be a demonstration of its actuality. For if we agree that there is no actual time travel in our universe, the supposition that there might have been involves postulating a substantial difference from actuality, a difference unlike in kind from anything we could know if firsthand. It is unclear to us exactly what the content of possible would be if one were to either maintain or deny the possibility of time travel in these circumstances, unless one merely meant that the possibility is not ruled out by some delineated set of constraints. As the example of Aristotle’s theory of water shows, conceptual and logical “possibility” do not entail possibility in a full-blooded sense. What exactly such a full-blooded sense would be in case of time travel, and whether one could have reason to believe it to obtain, remain to us obscure.

  • Aaronson, Scott, 2013, Quantum Computing since Democritus , Cambridge: Cambridge University Press. doi:10.1017/CBO9780511979309
  • Arntzenius, Frank, 2006, “Time Travel: Double Your Fun”, Philosophy Compass , 1(6): 599–616. doi:10.1111/j.1747-9991.2006.00045.x
  • Clarke, C.J.S., 1977, “Time in General Relativity” in Foundations of Space-Time Theory , Minnesota Studies in the Philosophy of Science , Vol VIII, Earman, J., Glymour, C., and Stachel, J. (eds), pp. 94–108. Minneapolis: University of Minnesota Press.
  • Deutsch, David, 1991, “Quantum Mechanics near Closed Timelike Lines”, Physical Review D , 44(10): 3197–3217. doi:10.1103/PhysRevD.44.3197
  • Deutsch, David and Michael Lockwood, 1994, “The Quantum Physics of Time Travel”, Scientific American , 270(3): 68–74. doi:10.1038/scientificamerican0394-68
  • Dowe, Phil, 2007, “Constraints on Data in Worlds with Closed Timelike Curves”, Philosophy of Science , 74(5): 724–735. doi:10.1086/525617
  • Earman, John, 1972, “Implications of Causal Propagation Outside the Null Cone”, Australasian Journal of Philosophy , 50(3): 222–237. doi:10.1080/00048407212341281
  • Earman, John, 1995, Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Spacetimes , New York: Oxford University Press.
  • Earman, John, Christopher Smeenk, and Christian Wüthrich, 2009, “Do the Laws of Physics Forbid the Operation of Time Machines?”, Synthese , 169(1): 91–124. doi:10.1007/s11229-008-9338-2
  • Echeverria, Fernando, Gunnar Klinkhammer, and Kip S. Thorne, 1991, “Billiard Balls in Wormhole Spacetimes with Closed Timelike Curves: Classical Theory”, Physical Review D , 44(4): 1077–1099. doi:10.1103/PhysRevD.44.1077
  • Effingham, Nikk, 2020, Time Travel: Probability and Impossibility , Oxford: Oxford University Press. doi:10.1093/oso/9780198842507.001.0001
  • Fletcher, Samuel C., 2020, “The Principle of Stability”, Philosopher’s Imprint , 20: article 3. [ Fletcher 2020 available online ]
  • Friedman, John and Michael Morris, 1991, “The Cauchy Problem for the Scalar Wave Equation Is Well Defined on a Class of Spacetimes with Closed Timelike Curves”, Physical Review Letters , 66(4): 401–404. doi:10.1103/PhysRevLett.66.401
  • Friedman, John, Michael S. Morris, Igor D. Novikov, Fernando Echeverria, Gunnar Klinkhammer, Kip S. Thorne, and Ulvi Yurtsever, 1990, “Cauchy Problem in Spacetimes with Closed Timelike Curves”, Physical Review D , 42(6): 1915–1930. doi:10.1103/PhysRevD.42.1915
  • Geroch, Robert and Gary Horowitz, 1979, “Global Structures of Spacetimes”, in General Relativity: An Einstein Centenary Survey , Stephen Hawking and W. Israel (eds.), Cambridge/New York: Cambridge University Press, Chapter 5, pp. 212–293.
  • Gödel, Kurt, 1949, “A Remark About the Relationship Between Relativity Theory and Idealistic Philosophy”, in Albert Einstein, Philosopher-Scientist , Paul Arthur Schilpp (ed.), Evanston, IL: Library of Living Philosophers, 557–562.
  • Hocking, John G. and Gail S. Young, 1961, Topology , (Addison-Wesley Series in Mathematics), Reading, MA: Addison-Wesley.
  • Horwich, Paul, 1987, “Time Travel”, in his Asymmetries in Time: Problems in the Philosophy of Science , , Cambridge, MA: MIT Press, 111–128.
  • Kutach, Douglas N., 2003, “Time Travel and Consistency Constraints”, Philosophy of Science , 70(5): 1098–1113. doi:10.1086/377392
  • Lewis, David, 1976, “The Paradoxes of Time Travel”, American Philosophical Quarterly , 13(2): 145–152.
  • Lloyd, Seth, Lorenzo Maccone, Raul Garcia-Patron, Vittorio Giovannetti, and Yutaka Shikano, 2011, “Quantum Mechanics of Time Travel through Post-Selected Teleportation”, Physical Review D , 84(2): 025007. doi:10.1103/PhysRevD.84.025007
  • Malament, David B., 1977, “Observationally Indistinguishable Spacetimes: Comments on Glymour’s Paper”, in Foundations of Space-Time Theories , John Earman, Clark N. Glymour, and John J. Stachel (eds.), (Minnesota Studies in the Philosophy of Science 8), Minneapolis, MN: University of Minnesota Press, 61–80.
  • –––, 1984, “‘Time Travel’ in the Gödel Universe”, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association , 1984(2): 91–100. doi:10.1086/psaprocbienmeetp.1984.2.192497
  • –––, 1985, “Minimal Acceleration Requirements for ‘Time Travel’, in Gödel Space‐time”, Journal of Mathematical Physics , 26(4): 774–777. doi:10.1063/1.526566
  • Manchak, John Byron, 2009, “Can We Know the Global Structure of Spacetime?”, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics , 40(1): 53–56. doi:10.1016/j.shpsb.2008.07.004
  • –––, 2011, “On Efficient ‘Time Travel’ in Gödel Spacetime”, General Relativity and Gravitation , 43(1): 51–60. doi:10.1007/s10714-010-1068-3
  • Maudlin, Tim, 1990, “Time-Travel and Topology”, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association , 1990(1): 303–315. doi:10.1086/psaprocbienmeetp.1990.1.192712
  • Novikov, I. D., 1992, “Time Machine and Self-Consistent Evolution in Problems with Self-Interaction”, Physical Review D , 45(6): 1989–1994. doi:10.1103/PhysRevD.45.1989
  • Smeenk, Chris and Christian Wüthrich, 2011, “Time Travel and Time Machines”, in the Oxford Handbook on Time , Craig Callender (ed.), Oxford: Oxford University Press, 577–630..
  • Stein, Howard, 1970, “On the Paradoxical Time-Structures of Gödel”, Philosophy of Science , 37(4): 589–601. doi:10.1086/288328
  • Thorne, Kip S., 1994, Black Holes and Time Warps: Einstein’s Outrageous Legacy , (Commonwealth Fund Book Program), New York: W.W. Norton.
  • Verch, Rainer, 2020, “The D-CTC Condition in Quantum Field Theory”, in Progress and Visions in Quantum Theory in View of Gravity , Felix Finster, Domenico Giulini, Johannes Kleiner, and Jürgen Tolksdorf (eds.), Cham: Springer International Publishing, 221–232. doi:10.1007/978-3-030-38941-3_9
  • Wallace, David, 2012, The Emergent Multiverse: Quantum Theory According to the Everett Interpretation , Oxford: Oxford University Press. doi:10.1093/acprof:oso/9780199546961.001.0001
  • Wasserman, Ryan, 2018, Paradoxes of Time Travel , Oxford: Oxford University Press. doi:10.1093/oso/9780198793335.001.0001
  • Weyl, Hermann, 1918/1920 [1922/1952], Raum, Zeit, Materie , Berlin: Springer; fourth edition 1920. Translated as Space—Time—Matter , Henry Leopold Brose (trans.), New York: Dutton, 1922. Reprinted 1952, New York: Dover Publications.
  • Wheeler, John Archibald and Richard Phillips Feynman, 1949, “Classical Electrodynamics in Terms of Direct Interparticle Action”, Reviews of Modern Physics , 21(3): 425–433. doi:10.1103/RevModPhys.21.425
  • Yurtsever, Ulvi, 1990, “Test Fields on Compact Space‐times”, Journal of Mathematical Physics , 31(12): 3064–3078. doi:10.1063/1.528960
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Adlam, Emily, unpublished, “ Is There Causation in Fundamental Physics? New Insights from Process Matrices and Quantum Causal Modelling ”, 2022, arXiv: 2208.02721. doi:10.48550/ARXIV.2208.02721
  • Rovelli, Carlo, unpublished, “ Can We Travel to the Past? Irreversible Physics along Closed Timelike Curves ”, arXiv: 1912.04702. doi:10.48550/ARXIV.1912.04702

causation: backward | determinism: causal | quantum mechanics | quantum mechanics: retrocausality | space and time: being and becoming in modern physics | time machines | time travel

Copyright © 2023 by Christopher Smeenk < csmeenk2 @ uwo . ca > Frank Arntzenius Tim Maudlin

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2023 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

Time travel: Is it possible?

Science says time travel is possible, but probably not in the way you're thinking.

time travel graphic illustration of a tunnel with a clock face swirling through the tunnel.

Albert Einstein's theory

  • General relativity and GPS
  • Wormhole travel
  • Alternate theories

Science fiction

Is time travel possible? Short answer: Yes, and you're doing it right now — hurtling into the future at the impressive rate of one second per second. 

You're pretty much always moving through time at the same speed, whether you're watching paint dry or wishing you had more hours to visit with a friend from out of town. 

But this isn't the kind of time travel that's captivated countless science fiction writers, or spurred a genre so extensive that Wikipedia lists over 400 titles in the category "Movies about Time Travel." In franchises like " Doctor Who ," " Star Trek ," and "Back to the Future" characters climb into some wild vehicle to blast into the past or spin into the future. Once the characters have traveled through time, they grapple with what happens if you change the past or present based on information from the future (which is where time travel stories intersect with the idea of parallel universes or alternate timelines). 

Related: The best sci-fi time machines ever

Although many people are fascinated by the idea of changing the past or seeing the future before it's due, no person has ever demonstrated the kind of back-and-forth time travel seen in science fiction or proposed a method of sending a person through significant periods of time that wouldn't destroy them on the way. And, as physicist Stephen Hawking pointed out in his book " Black Holes and Baby Universes" (Bantam, 1994), "The best evidence we have that time travel is not possible, and never will be, is that we have not been invaded by hordes of tourists from the future."

Science does support some amount of time-bending, though. For example, physicist Albert Einstein 's theory of special relativity proposes that time is an illusion that moves relative to an observer. An observer traveling near the speed of light will experience time, with all its aftereffects (boredom, aging, etc.) much more slowly than an observer at rest. That's why astronaut Scott Kelly aged ever so slightly less over the course of a year in orbit than his twin brother who stayed here on Earth. 

Related: Controversially, physicist argues that time is real

There are other scientific theories about time travel, including some weird physics that arise around wormholes , black holes and string theory . For the most part, though, time travel remains the domain of an ever-growing array of science fiction books, movies, television shows, comics, video games and more. 

Scott and Mark Kelly sit side by side wearing a blue NASA jacket and jeans

Einstein developed his theory of special relativity in 1905. Along with his later expansion, the theory of general relativity , it has become one of the foundational tenets of modern physics. Special relativity describes the relationship between space and time for objects moving at constant speeds in a straight line. 

The short version of the theory is deceptively simple. First, all things are measured in relation to something else — that is to say, there is no "absolute" frame of reference. Second, the speed of light is constant. It stays the same no matter what, and no matter where it's measured from. And third, nothing can go faster than the speed of light.

From those simple tenets unfolds actual, real-life time travel. An observer traveling at high velocity will experience time at a slower rate than an observer who isn't speeding through space. 

While we don't accelerate humans to near-light-speed, we do send them swinging around the planet at 17,500 mph (28,160 km/h) aboard the International Space Station . Astronaut Scott Kelly was born after his twin brother, and fellow astronaut, Mark Kelly . Scott Kelly spent 520 days in orbit, while Mark logged 54 days in space. The difference in the speed at which they experienced time over the course of their lifetimes has actually widened the age gap between the two men.

"So, where[as] I used to be just 6 minutes older, now I am 6 minutes and 5 milliseconds older," Mark Kelly said in a panel discussion on July 12, 2020, Space.com previously reported . "Now I've got that over his head."

General relativity and GPS time travel

Graphic showing the path of GPS satellites around Earth at the center of the image.

The difference that low earth orbit makes in an astronaut's life span may be negligible — better suited for jokes among siblings than actual life extension or visiting the distant future — but the dilation in time between people on Earth and GPS satellites flying through space does make a difference. 

Read more: Can we stop time?

The Global Positioning System , or GPS, helps us know exactly where we are by communicating with a network of a few dozen satellites positioned in a high Earth orbit. The satellites circle the planet from 12,500 miles (20,100 kilometers) away, moving at 8,700 mph (14,000 km/h). 

According to special relativity, the faster an object moves relative to another object, the slower that first object experiences time. For GPS satellites with atomic clocks, this effect cuts 7 microseconds, or 7 millionths of a second, off each day, according to the American Physical Society publication Physics Central .  

Read more: Could Star Trek's faster-than-light warp drive actually work?

Then, according to general relativity, clocks closer to the center of a large gravitational mass like Earth tick more slowly than those farther away. So, because the GPS satellites are much farther from the center of Earth compared to clocks on the surface, Physics Central added, that adds another 45 microseconds onto the GPS satellite clocks each day. Combined with the negative 7 microseconds from the special relativity calculation, the net result is an added 38 microseconds. 

This means that in order to maintain the accuracy needed to pinpoint your car or phone — or, since the system is run by the U.S. Department of Defense, a military drone — engineers must account for an extra 38 microseconds in each satellite's day. The atomic clocks onboard don’t tick over to the next day until they have run 38 microseconds longer than comparable clocks on Earth.

Given those numbers, it would take more than seven years for the atomic clock in a GPS satellite to un-sync itself from an Earth clock by more than a blink of an eye. (We did the math: If you estimate a blink to last at least 100,000 microseconds, as the Harvard Database of Useful Biological Numbers does, it would take thousands of days for those 38 microsecond shifts to add up.) 

This kind of time travel may seem as negligible as the Kelly brothers' age gap, but given the hyper-accuracy of modern GPS technology, it actually does matter. If it can communicate with the satellites whizzing overhead, your phone can nail down your location in space and time with incredible accuracy. 

Can wormholes take us back in time?

General relativity might also provide scenarios that could allow travelers to go back in time, according to NASA . But the physical reality of those time-travel methods is no piece of cake. 

Wormholes are theoretical "tunnels" through the fabric of space-time that could connect different moments or locations in reality to others. Also known as Einstein-Rosen bridges or white holes, as opposed to black holes, speculation about wormholes abounds. But despite taking up a lot of space (or space-time) in science fiction, no wormholes of any kind have been identified in real life. 

Related: Best time travel movies

"The whole thing is very hypothetical at this point," Stephen Hsu, a professor of theoretical physics at the University of Oregon, told Space.com sister site Live Science . "No one thinks we're going to find a wormhole anytime soon."

Primordial wormholes are predicted to be just 10^-34 inches (10^-33 centimeters) at the tunnel's "mouth". Previously, they were expected to be too unstable for anything to be able to travel through them. However, a study claims that this is not the case, Live Science reported . 

The theory, which suggests that wormholes could work as viable space-time shortcuts, was described by physicist Pascal Koiran. As part of the study, Koiran used the Eddington-Finkelstein metric, as opposed to the Schwarzschild metric which has been used in the majority of previous analyses.

In the past, the path of a particle could not be traced through a hypothetical wormhole. However, using the Eddington-Finkelstein metric, the physicist was able to achieve just that.

Koiran's paper was described in October 2021, in the preprint database arXiv , before being published in the Journal of Modern Physics D.

Graphic illustration of a wormhole

Alternate time travel theories

While Einstein's theories appear to make time travel difficult, some researchers have proposed other solutions that could allow jumps back and forth in time. These alternate theories share one major flaw: As far as scientists can tell, there's no way a person could survive the kind of gravitational pulling and pushing that each solution requires.

Infinite cylinder theory

Astronomer Frank Tipler proposed a mechanism (sometimes known as a Tipler Cylinder ) where one could take matter that is 10 times the sun's mass, then roll it into a very long, but very dense cylinder. The Anderson Institute , a time travel research organization, described the cylinder as "a black hole that has passed through a spaghetti factory."

After spinning this black hole spaghetti a few billion revolutions per minute, a spaceship nearby — following a very precise spiral around the cylinder — could travel backward in time on a "closed, time-like curve," according to the Anderson Institute. 

The major problem is that in order for the Tipler Cylinder to become reality, the cylinder would need to be infinitely long or be made of some unknown kind of matter. At least for the foreseeable future, endless interstellar pasta is beyond our reach.

Time donuts

Theoretical physicist Amos Ori at the Technion-Israel Institute of Technology in Haifa, Israel, proposed a model for a time machine made out of curved space-time — a donut-shaped vacuum surrounded by a sphere of normal matter.

"The machine is space-time itself," Ori told Live Science . "If we were to create an area with a warp like this in space that would enable time lines to close on themselves, it might enable future generations to return to visit our time."

Amos Ori is a theoretical physicist at the Technion-Israel Institute of Technology in Haifa, Israel. His research interests and publications span the fields of general relativity, black holes, gravitational waves and closed time lines.

There are a few caveats to Ori's time machine. First, visitors to the past wouldn't be able to travel to times earlier than the invention and construction of the time donut. Second, and more importantly, the invention and construction of this machine would depend on our ability to manipulate gravitational fields at will — a feat that may be theoretically possible but is certainly beyond our immediate reach.

Graphic illustration of the TARDIS (Time and Relative Dimensions in Space) traveling through space, surrounded by stars.

Time travel has long occupied a significant place in fiction. Since as early as the "Mahabharata," an ancient Sanskrit epic poem compiled around 400 B.C., humans have dreamed of warping time, Lisa Yaszek, a professor of science fiction studies at the Georgia Institute of Technology in Atlanta, told Live Science .  

Every work of time-travel fiction creates its own version of space-time, glossing over one or more scientific hurdles and paradoxes to achieve its plot requirements. 

Some make a nod to research and physics, like " Interstellar ," a 2014 film directed by Christopher Nolan. In the movie, a character played by Matthew McConaughey spends a few hours on a planet orbiting a supermassive black hole, but because of time dilation, observers on Earth experience those hours as a matter of decades. 

Others take a more whimsical approach, like the "Doctor Who" television series. The series features the Doctor, an extraterrestrial "Time Lord" who travels in a spaceship resembling a blue British police box. "People assume," the Doctor explained in the show, "that time is a strict progression from cause to effect, but actually from a non-linear, non-subjective viewpoint, it's more like a big ball of wibbly-wobbly, timey-wimey stuff." 

Long-standing franchises like the "Star Trek" movies and television series, as well as comic universes like DC and Marvel Comics, revisit the idea of time travel over and over. 

Related: Marvel movies in order: chronological & release order

Here is an incomplete (and deeply subjective) list of some influential or notable works of time travel fiction:

Books about time travel:

A sketch from the Christmas Carol shows a cloaked figure on the left and a person kneeling and clutching their head with their hands.

  • Rip Van Winkle (Cornelius S. Van Winkle, 1819) by Washington Irving
  • A Christmas Carol (Chapman & Hall, 1843) by Charles Dickens
  • The Time Machine (William Heinemann, 1895) by H. G. Wells
  • A Connecticut Yankee in King Arthur's Court (Charles L. Webster and Co., 1889) by Mark Twain
  • The Restaurant at the End of the Universe (Pan Books, 1980) by Douglas Adams
  • A Tale of Time City (Methuen, 1987) by Diana Wynn Jones
  • The Outlander series (Delacorte Press, 1991-present) by Diana Gabaldon
  • Harry Potter and the Prisoner of Azkaban (Bloomsbury/Scholastic, 1999) by J. K. Rowling
  • Thief of Time (Doubleday, 2001) by Terry Pratchett
  • The Time Traveler's Wife (MacAdam/Cage, 2003) by Audrey Niffenegger
  • All You Need is Kill (Shueisha, 2004) by Hiroshi Sakurazaka

Movies about time travel:

  • Planet of the Apes (1968)
  • Superman (1978)
  • Time Bandits (1981)
  • The Terminator (1984)
  • Back to the Future series (1985, 1989, 1990)
  • Star Trek IV: The Voyage Home (1986)
  • Bill & Ted's Excellent Adventure (1989)
  • Groundhog Day (1993)
  • Galaxy Quest (1999)
  • The Butterfly Effect (2004)
  • 13 Going on 30 (2004)
  • The Lake House (2006)
  • Meet the Robinsons (2007)
  • Hot Tub Time Machine (2010)
  • Midnight in Paris (2011)
  • Looper (2012)
  • X-Men: Days of Future Past (2014)
  • Edge of Tomorrow (2014)
  • Interstellar (2014)
  • Doctor Strange (2016)
  • A Wrinkle in Time (2018)
  • The Last Sharknado: It's About Time (2018)
  • Avengers: Endgame (2019)
  • Tenet (2020)
  • Palm Springs (2020)
  • Zach Snyder's Justice League (2021)
  • The Tomorrow War (2021)

Television about time travel:

Image of the Star Trek spaceship USS Enterprise

  • Doctor Who (1963-present)
  • The Twilight Zone (1959-1964) (multiple episodes)
  • Star Trek (multiple series, multiple episodes)
  • Samurai Jack (2001-2004)
  • Lost (2004-2010)
  • Phil of the Future (2004-2006)
  • Steins;Gate (2011)
  • Outlander (2014-2023)
  • Loki (2021-present)

Games about time travel:

  • Chrono Trigger (1995)
  • TimeSplitters (2000-2005)
  • Kingdom Hearts (2002-2019)
  • Prince of Persia: Sands of Time (2003)
  • God of War II (2007)
  • Ratchet and Clank Future: A Crack In Time (2009)
  • Sly Cooper: Thieves in Time (2013)
  • Dishonored 2 (2016)
  • Titanfall 2 (2016)
  • Outer Wilds (2019)

Additional resources

Explore physicist Peter Millington's thoughts about Stephen Hawking's time travel theories at The Conversation . Check out a kid-friendly explanation of real-world time travel from NASA's Space Place . For an overview of time travel in fiction and the collective consciousness, read " Time Travel: A History " (Pantheon, 2016) by James Gleik. 

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

Ailsa Harvey

Ailsa is a staff writer for How It Works magazine, where she writes science, technology, space, history and environment features. Based in the U.K., she graduated from the University of Stirling with a BA (Hons) journalism degree. Previously, Ailsa has written for Cardiff Times magazine, Psychology Now and numerous science bookazines. 

Satellites watch as 4th global coral bleaching event unfolds (image)

Happy Earth Day 2024! NASA picks 6 new airborne missions to study our changing planet

Earth got hammered by cosmic rays 41,000 years ago due to a weak magnetic field

Most Popular

  • 2 Mirrors in space could boost solar power production on Earth. Here's how.
  • 3 NASA ends CloudSat Earth-observing mission after 18 years
  • 4 Earth's weird 'quasi-moon' Kamo'oalewa is a fragment blasted out of big moon crater
  • 5 Fortnite launches to the moon in new 'Lunar Horizons' simulation game

is time travel easy

is time travel easy

  • The Open University
  • Guest user / Sign out
  • Study with The Open University

My OpenLearn Profile

Personalise your OpenLearn profile, save your favourite content and get recognition for your learning

Back to the Future: Is time travel possible?

An angled close-up of a large outdoor clock face that has golden numbers of Roman numerals on it and shows the numbers twelve to three within in the image. The clock-face is a grey and green coloured metal.

In the Back to the Future films, Marty McFly travels backwards and forwards in time with the help of Doc Emmett Brown and his souped up DeLorean car. But is time travel really possible?

The simple answer to this question is: Yes! In fact as you read this, you are travelling through time at a rate of one second per second. OK, that’s not quite the answer you were expecting, but it is time travel nonetheless – we can’t help but travel through time, because that’s the nature of time itself. It flows relentlessly from past to future, and the instant of ‘now’ is an infinitesimally short period of time that it’s impossible to remain in. However it turns out that the rate at which time flows forwards is not necessarily a fixed quantity.

So, what about travelling into the future or the past – is that sort of real time travel possible? Well, the first of these is certainly possible, but as far as we know, the other is impossible to achieve.

Time travel into the future is easy – in principle at least. Albert Einstein’s theory of special relativity, which he devised in 1905, shows that ‘moving clocks run slow’. This is an effect known as time dilation. Quite simply, if a clock moves at a constant speed with respect to a stationary observer, that observer would see the moving clock ticking more slowly than one at rest next to her. And the faster the clock moves, the more slowly it ticks. This isn’t just a trick either – all physical or biological process, or anything at all that you care to measure, would indeed happen more slowly when moving rapidly, as viewed from a stationary view point.

Save the Clock tower leaflet, Back to the Future

And this is what makes time travel into the future possible. Imagine that you boarded a spaceship to the star Tau Ceti, which is 12 light years away. Your spaceship can travel at 80% of the speed of light, which is about 240,000 kilometres per second. As soon as you get there, you turn round and come straight home. Back on Earth, 30 years have passed by the time you return, but on the spaceship, time has passed more slowly. To you on the spaceship, only 18 years would have passed. In effect, you would therefore have travelled 12 years into the future.

The faster you travel, the further into the future you can jump. For instance, in order to jump 1000 years into the future, but only have 1 year elapse on your spaceship, you would need to travel at 99.99995% of the speed of light.

So much for time travel into the future – but why is time travel into the past so difficult? This all comes down to what’s known as causality and is perhaps best summed up by the Grandfather paradox. If time travel into the past were possible, then you could (if you really wanted to) travel into the past to a time before your parents were born and kill your Grandfather. Then your parent would never be born, so neither would you, so you couldn’t travel into the past to kill your Grandfather after all… Because paradoxes like this simply don’t occur in the Universe (as far as we know), time travel into the past cannot be possible.

My favourite exploration of this time travel paradox is in a short story by Robert A. Heinlein from 1958 called “All you zombies”. The plot concerns a character who is eventually revealed (by a series of time travel experiences) to be both his own father and mother. Thankfully, such paradoxes seem not to occur in the real world or, if they do – like Marty McFly when he ensures his parents really did get together in 1955 – people just make sure things happen in the past the way they were meant to!

Learn more about time travel

60 Second Adventures in Astronomy: Special relativity

60 Second Adventures in Astronomy: Special relativity

Who had more fun in life, Albert Einstein or Richard Feynman? Whichever one of them was travelling faster

Level: 1 Introductory

BBC Inside Science: Back to the Future special

BBC Inside Science: Back to the Future special

BBC Inside Science explores the theme of time travel along with the Film programme as part of their Back to the Future special.

External link

60 second adventures in thought - The Grandfather Paradox

60 second adventures in thought - The Grandfather Paradox

A well known story that questions the logic of time travel. Part of a series of fast-paced animations explaining six famous thought experiments.

This article came Back to the Future from 2013 when it was originally written to celebrate the 50th anniversary of Doctor Who -  discover more perspectives on science fiction and time travel.

Become an OU student

Ratings & comments, share this free course, copyright information, publication details.

  • Originally published: Monday, 19 October 2015
  • Body text - Creative-Commons : The Open University
  • Image 'An angled close-up of a large outdoor clock face that has golden numbers of Roman numerals on it and shows the numbers twelve to three within in the image. The clock-face is a grey and green coloured metal. ' - Marko [ CC BY-ND-NC 2.0 ] via Flickr Creative Commons under Creative-Commons license
  • Image 'Save the Clock tower leaflet, Back to the Future' - Alex Headrick [ CC BY-NC-ND 2.0 ] via Flickr Creative Commons under Creative-Commons license
  • Image '100 years of General Relativity' - Wally Gobetz [ CC BY-NC-ND 2.0 ] via Flickr Creative Commons under Creative-Commons license
  • Image '60 Second Adventures in Astronomy: Special relativity' - under Creative-Commons license

Rate and Review

Rate this article, review this article.

Log into OpenLearn to leave reviews and join in the conversation.

Article reviews

For further information, take a look at our frequently asked questions which may give you the support you need.

  • Newsletters

Time travel: five ways that we could do it

time travel_travel through time

Cathal O’Connell

Cathal O'Connell is a science writer based in Melbourne.

In 2009 the British physicist Stephen Hawking held a party for time travellers – the twist was he sent out the invites a year later (No guests showed up). Time travel is probably impossible. Even if it were possible, Hawking and others have argued that you could never travel back before the moment your time machine was built.

But travel to the future? That’s a different story.

Of course, we are all time travellers as we are swept along in the current of time, from past to future, at a rate of one hour per hour.

But, as with a river, the current flows at different speeds in different places. Science as we know it allows for several methods to take the fast-track into the future. Here’s a rundown.

050416 timetravel 1

1. Time travel via speed

This is the easiest and most practical way to time travel into the far future – go really fast.

According to Einstein’s theory of special relativity, when you travel at speeds approaching the speed of light, time slows down for you relative to the outside world.

This is not a just a conjecture or thought experiment – it’s been measured. Using twin atomic clocks (one flown in a jet aircraft, the other stationary on Earth) physicists have shown that a flying clock ticks slower, because of its speed.

In the case of the aircraft, the effect is minuscule. But If you were in a spaceship travelling at 90% of the speed of light, you’d experience time passing about 2.6 times slower than it was back on Earth.

And the closer you get to the speed of light, the more extreme the time-travel.

Computer solves a major time travel problem

The highest speeds achieved through any human technology are probably the protons whizzing around the Large Hadron Collider at 99.9999991% of the speed of light. Using special relativity we can calculate one second for the proton is equivalent to 27,777,778 seconds, or about 11 months , for us.

Amazingly, particle physicists have to take this time dilation into account when they are dealing with particles that decay. In the lab, muon particles typically decay in 2.2 microseconds. But fast moving muons, such as those created when cosmic rays strike the upper atmosphere, take 10 times longer to disintegrate.

2. Time travel via gravity

The next method of time travel is also inspired by Einstein. According to his theory of general relativity, the stronger the gravity you feel, the slower time moves.

As you get closer to the centre of the Earth, for example, the strength of gravity increases. Time runs slower for your feet than your head.

Again, this effect has been measured. In 2010, physicists at the US National Institute of Standards and Technology (NIST) placed two atomic clocks on shelves, one 33 centimetres above the other, and measured the difference in their rate of ticking. The lower one ticked slower because it feels a slightly stronger gravity.

To travel to the far future, all we need is a region of extremely strong gravity, such as a black hole. The closer you get to the event horizon, the slower time moves – but it’s risky business, cross the boundary and you can never escape.

050416 timetravel 2

And anyway, the effect is not that strong so it’s probably not worth the trip.

Assuming you had the technology to travel the vast distances to reach a black hole (the nearest is about 3,000 light years away), the time dilation through travelling would be far greater than any time dilation through orbiting the black hole itself.

(The situation described in the movie Interstellar , where one hour on a planet near a black hole is the equivalent of seven years back on Earth, is so extreme as to be impossible in our Universe, according to Kip Thorne, the movie’s scientific advisor.)

Newsletter

The most mindblowing thing, perhaps, is that GPS systems have to account for time dilation effects (due to both the speed of the satellites and gravity they feel) in order to work. Without these corrections, your phones GPS capability wouldn’t be able to pinpoint your location on Earth to within even a few kilometres.

3. Time travel via suspended animation

Another way to time travel to the future may be to slow your perception of time by slowing down, or stopping, your bodily processes and then restarting them later.

Bacterial spores can live for millions of years in a state of suspended animation, until the right conditions of temperature, moisture, food kick start their metabolisms again. Some mammals, such as bears and squirrels, can slow down their metabolism during hibernation, dramatically reducing their cells’ requirement for food and oxygen.

Could humans ever do the same?

Though completely stopping your metabolism is probably far beyond our current technology, some scientists are working towards achieving inducing a short-term hibernation state lasting at least a few hours. This might be just enough time to get a person through a medical emergency, such as a cardiac arrest, before they can reach the hospital.

050416 timetravel 3

In 2005, American scientists demonstrated a way to slow the metabolism of mice (which do not hibernate) by exposing them to minute doses of hydrogen sulphide, which binds to the same cell receptors as oxygen. The core body temperature of the mice dropped to 13 °C and metabolism decreased 10-fold. After six hours the mice could be reanimated without ill effects.

Unfortunately, similar experiments on sheep and pigs were not successful, suggesting the method might not work for larger animals.

Another method, which induces a hypothermic hibernation by replacing the blood with a cold saline solution, has worked on pigs and is currently undergoing human clinical trials in Pittsburgh.

4. Time travel via wormholes

General relativity also allows for the possibility for shortcuts through spacetime, known as wormholes, which might be able to bridge distances of a billion light years or more, or different points in time.

Many physicists, including Stephen Hawking, believe wormholes are constantly popping in and out of existence at the quantum scale, far smaller than atoms. The trick would be to capture one, and inflate it to human scales – a feat that would require a huge amount of energy, but which might just be possible, in theory.

Attempts to prove this either way have failed, ultimately because of the incompatibility between general relativity and quantum mechanics.

5. Time travel using light

Another time travel idea, put forward by the American physicist Ron Mallet, is to use a rotating cylinder of light to twist spacetime. Anything dropped inside the swirling cylinder could theoretically be dragged around in space and in time, in a similar way to how a bubble runs around on top your coffee after you swirl it with a spoon.

According to Mallet, the right geometry could lead to time travel into either the past and the future.

Since publishing his theory in 2000, Mallet has been trying to raise the funds to pay for a proof of concept experiment, which involves dropping neutrons through a circular arrangement of spinning lasers.

His ideas have not grabbed the rest of the physics community however, with others arguing that one of the assumptions of his basic model is plagued by a singularity, which is physics-speak for “it’s impossible”.

The Royal Institution of Australia has an Education resource based on this article. You can access it here .

Related Reading: Computer solves a major time travel problem

is time travel easy

Originally published by Cosmos as Time travel: five ways that we could do it

Please login to favourite this article.

Advertisement

About time: Is time travel possible?

By Marcus Chown

5 October 2011

New Scientist Default Image

Time after time

(Image: Warner Bros. Entertainment)

Read more: “ About time: Adventures in the fourth dimension “

IT IS easy to dismiss time travel as nothing more than science fiction. After all, H. G. Wells wrote The Time Machine in the late 1800s, but still no one has built one that works. Don’t give up yet, though: we are continuing to make discoveries that may show us the way forward – or back.

Time travel is inherent in the basics of general relativity . Einstein’s theory predicts that time runs more slowly in strong gravity, so you grow old more slowly living in a bungalow than in a skyscraper: being closer to the ground, you are in marginally stronger gravity (see “Personal time warps”) . So to make a time machine, you simply have to connect two regions where time flows at different rates.

Take, for instance, the Earth and the immediate vicinity of a black hole, where strong gravity makes time flow extremely slowly. Say you start two clocks ticking on Monday at the two locations. When Friday comes around on Earth, it will still be only Wednesday by the black hole. So if you could travel instantaneously from Earth to near the black hole, you could travel from Friday back to Wednesday. Hey presto: time travel.

The question is, can you? Yes – in principle. According to quantum theory, the fabric of space-time is a tangle of sub-microscopic shortcuts through space and time known as wormholes. A few steps along such a tunnel and you might emerge light years away on the other side of the galaxy,…

Sign up to our weekly newsletter

Receive a weekly dose of discovery in your inbox! We'll also keep you up to date with New Scientist events and special offers.

To continue reading, subscribe today with our introductory offers

No commitment, cancel anytime*

Offer ends 2nd of July 2024.

*Cancel anytime within 14 days of payment to receive a refund on unserved issues.

Inclusive of applicable taxes (VAT)

Existing subscribers

More from New Scientist

Explore the latest news, articles and features

Mathematics

The mathematician who worked out how to time travel.

Subscriber-only

Most accurate clock ever can tick for 40 billion years without error

Antique clocks give a window into scientific innovation of times past, 'this century is special': martin rees on the vast span of time, popular articles.

Trending New Scientist articles

Science Borealis t-shirts mugs and hand bags

Time travel is possible, but it’s a one-way ticket

Chenoa van den Boogaard , Physics and Astronomy editor

The ability to travel through time, whether it is to fix a mistake in the past or gain insight into the future, has long been embraced by science fiction and debated by theoretical physicists. While the debate continues over whether travelling into the past is possible, physicists have determined that travelling to the future most certainly is. And you don’t need a wormhole or a DeLorean to do it.

Real-life time travel occurs through time dilation, a property of Einstein’s special relativity . Einstein was the first to realize that time is not constant, as previously believed, but instead slows down as you move faster through space.

As part of his theory, Einstein re-envisioned space itself. He coined the phrase “spacetime,” fusing the three dimensions of space and one dimension of time into a single term. Instead of treating space as a flat and rigid place that holds all the objects in the universe, Einstein thought of it as curved and malleable, able to form gravitational dips around masses that pull other objects in, just as a bowling ball placed in the centre of a trampoline would cause any smaller object placed on the trampoline to slide towards the centre.

Courtesy and © of NASA

A computer-generated representation of Einstein’s curved spacetime. The Earth creates a gravitational dip in the fabric of spacetime which is deepest at its core. Courtesy and © of NASA

The closer an object gets to the centre of the dip, the faster it accelerates. The centre of the Earth’s gravitational dip is located at the Earth’s core, where gravitational acceleration is strongest. According to Einstein’s theory, because time moves more slowly as you move faster through space, the closer an object is to the centre of the Earth, the slower time moves for that object.

This effect can be seen in GPS satellites, which orbit 20,200 kilometres above the Earth’s surface. These satellites have highly precise clocks onboard that gain an average of 38 microseconds per day due to time dilation. While this time gain seems insignificant, GPS satellites rely on their onboard clocks to maintain precise global positioning. Running 38 microseconds fast would result in a positioning error of nearly 10 kilometres, an error that would increase daily if the time difference were not constantly corrected.

A more dramatic example of time dilation can be seen in the movie Interstellar when Matthew McConaughey and his crew land on a planet with an extreme gravitational field caused by a nearby black hole. Because of the black hole’s intense gravitational influence, time slows dramatically for the crew on the planet, making one hour on the surface equal to seven years on Earth. This is why, when the crew returns to Earth, Matthew McConaughey’s daughter is an old woman while he appears to be the same age as when he left.

So why hasn’t humanity succeeded in making such drastic leaps forward in time? The answer to this question comes down to velocity. In order for humanity to send a traveller years into the future, we would either have to take advantage of the intense gravitational acceleration caused by black holes or send the traveller rocketing into space at close to the speed of light (about 1 billion km/h). With our current technology , jumping a few microseconds into the future is all humans can manage.

But if technology one day allows us to send a human into the future by travelling close to the speed of light, would there be any way for the traveller to use time dilation to return to the past and report her findings? “Interstellar travel reaching close to the speed of light might be possible,” says Dr. Jaymie Matthews , professor of astrophysics at the University of British Columbia, “[but] this voyage is one way into the future, not back to the past.”

If we can’t use time dilation to return to the past, does this mean that the past is forever inaccessible? Perhaps not. Einstein proposed that time travel into the past could be achieved through an Einstein-Rosen bridge, a type of wormhole. Wormholes are theoretical areas of spacetime that are warped in a way that connects two distant points in space.

Image by Panzi, CC-BY 3.0

A visualization of a wormhole: The fabric of spacetime curves back upon itself, forming a bridge between two distant locations. Image by Panzi , CC-BY 3.0

Einstein’s equations suggested that this bridge in space could hypothetically connect two points in time instead if it were stable enough. “At the moment, even an Einstein-Rosen bridge cannot [be used to] go back in the past because it doesn’t live long enough – it is not stable,” Matthews explains.

“Even if it was stable, it [requires] other physics, which we don’t have. Hypothetical particles and states of matter that have “exotic” physical properties that would violate known laws of physics, such as a particle having a negative mass. That is why “wormholes” are only science fiction.”

While it would be fascinating to travel back in time to see the dinosaurs or to meet Albert Einstein and show him the reality of time travel, perhaps it is best if the past remains untouched. Travelling to the past invites the possibility of making an alteration that could destroy the future. For example, in Back to the Future , Marty McFly travels to the past and inadvertently prevents his parents from meeting each other, nearly preventing his own existence. But if he had undone his own existence, how could he have travelled back in time in the first place?

Marty’s adventures are a variation of the grandfather paradox: what happens if you go back in time and kill your grandfather before your father is conceived? If you are successful, how is it possible that you’re alive to kill your grandfather in the first place?

A recent study at the University of Queensland may have the answer to this baffling paradox. In this study, the researchers prove mathematically that paradox-free time travel is possible, showing that the universe will self-correct to avoid inconsistencies. If this is true, then even if we could travel back in time, we would never be able to alter events to create a different future.

While these new findings are enlightening, there appears to be more evidence that, although time dilation can allow us to glimpse the future, we will never be able to visit the past. As the late Stephen Hawking said in his book Black Holes and Baby Universes , “The best evidence we have that time travel [into the past] is not possible, and never will be, is that we have not been invaded by hordes of tourists from the future.”

Banner image by Alex Lehner, CC BY 2.0

240 thoughts on “ Time travel is possible, but it’s a one-way ticket ”

How do I go about time travel? what do I need how do I get those required things?

Very large ring magnets and some mathematics and will to see it in reality.

How about a sphere magnet ship…

hoe about 3d time and hemi synch or portals augmented reality,power of suggestion..drugs pcp binural tones frequency amplitude .virtual computing ie.

I’m a time traveling tourist, Stephen Hawking was wrong.

Time is simply a measurement of space under the amount given its mass and the amount of light and dark in which governs its mass in a 4dimensional reality step outside of the force in which permenates its flow one would reside there would be no past present or future there be a fixed permance of a constant here and now and so ok then what is to come.

Very well explained article !!

But I think if physics says time travel can be possible then it’s definitely possible. Considering not to go back to your childhood and fix things but rather can go to the past but as invisible person to them. So that,

No actions by you would impact your future.

Regards, Kirankumar DR

Tell me more

Yes.. I wish I can do this too 🙂

We will understand it better, by and by…

I have a theory for warp speed, but nasa would have to put it to the test…check my Facebook

I am reading for this drive , i am ready , without think my life safe or not

@Ravi chandila English translation please?

Please someone help me I just want to send a message to myself in my past.,to get the love of my life, he never revealed to me his feelings now my life is ruined by the decision of my elders Please help me, it’s question of my life and death. Nazneen

Is time travel machine is their, if the time travel machine is true can it move to the past . To bring back my lost life

That’s the problem you know.. it is not there that’s why we aren’t able to travel time..and yes it it will be built then you will be able to do so…..

damn my life is also lost and broken but still no one can give a time machine for free

DO NOT change the future. That’s why people like you couldn’t go. One wrong person to ruin it for the rest of us

On the point of time reversal, it is evidently impossible. The Uncertainty Principle prohibits spacetime reversal. The Universe is unable to remember its past (as a consequence of the Uncertainty Principle), therefore the Universe cannot reorganise itself.

Can I have to go on my past with another time travel it is a possible when just tell me about one thing that can I have to go in my past one year

we dont need magnets.we need a strong gravitational force to warp spacetime allowing us to travel through with speed of sound or speed of light or faster.we need to learn how to control such force carefully or it could be lethal.gravity slows down time.but it can theoratically work both ways.if we can reverse the gravity’s natural reaction we could speed up a spacecraft faster than light(its all relative(and theoratical))

I WAS ACTUALLY JUST THINKING THE SAME THINFG BEFORE READING YOUR PIECE. VERY WELL EXPLAINED, AND IT DOES MAKE ALOT OF SENSE. WELL DONE.

oh and I forgot to add it can be the key to look into the universe and also travelling time(theoratical).speed and gravity are the key to the universe(theory not proved)

All you really need is a crystal diode with 16 sides, a large pain of glass, and a frequency transmitter near a bathtub full of ice cold water….if you reach the right frequency you can travel through time forward and reverse…

Magnetized metal(VCR Reading Head), to read time out of the Magnetosphere all around earth. The Magnetosphere kills 2 birds with one stone- it protects earth and it records human time:

Mystery solved and I will explain, I was in a coma 3 months and I experienced things, I traveled time forward and backward, it is not a one way ticket. Movies and songs are recorded on magnetic tape in a VCR tape Cartridge or Cassette tape,   Magnetic tape recording works by converting electrical signals into magnetic energy, which imprints a record of the signal onto a moving tape covered in magnetic particles.   3D life on earth(a movie), and the Magnetosphere all around earth coming from the core of earth(MAGNETIC ACTIVITY) without Atom Made Tape, is like a movie on magnetic Atom made tape in a VCR tape cartridge. Revolution and Rotation is the motor(VCR).

This is why people have those freaky Deji’vu feelings like they have lived this before, BECAUSE YOU HAVE, and how people can be psychic, and how there is Prophecy in the Bible. When a person dies, their Spirit- MIND(Thoughts, Feelings, Urges(Physical and mental personality)) breaks out of human body- a stopped heart is what releases the spirit from the human body. Then the Soul(Life) with the memory of your existence in it breaks out of spirit and goes back to your birthday with a erased memory, meanwhile your spirit goes back in time to when you were a teenager starting the mental puberty, maturity from that adult spirit you died with in last life.In that old movie Star Wars or maybe it was the Empire Strikes Back, there is a scene where Princess Laya plays like a 3D movie, that is EXACTLY how its of life on earth.

Mr Snow, I believe you as I have seen it too. As humans we have deep knowledge of things we cannot rationally explain but you have done a great job here.

I thought that Analogy would be a better and easier way to explain, or in a picture of the earth from far out in space with the atmosphere around it looks like a DVD disk and the earth being the center sticker but is in 3D.

Actually you are on to several things here. I have also had the infusion of knowledge that also had to do with comparing life to recorded movies and music. I know you were using it to explain your theory, but I do think there is something there, I always have. When you watch a movie you are seeing the past. Why can’t you somehow use a recording as a base to go back into? I agree with everything you said here, and it’s worth looking into.

Jeffrey, very interesting idea!! Could be something to that. As far as your coma experiences, I think there are things we just do not understand and are nearly impossible to explain. Perhaps time IS like a video tape, or a DVD? Magnetism is one of the forces of nature. I too have had some odd experiences that suggest that we are able to perceive things beyond our five known senses.

I think if you have had a near death experience, such as being in a coma, then you have experienced the powerful hallucinations provided by the chemical substance DMT which your body creates naturally in times of extreme trauma, but also found in most plants and used recreationally by some who are brave enough and into that kind of thing. Your theory is interesting, but completely unproven and as far as I know untested. If things were so simple, I’m sure many scientists would have already thought of such an idea and tested it.

How do I travel through time

Be alive and live life to the fullest is the best way to travel through time ! OR Befriend grey aliens../ They may hold the key to the sum of all knowledge in the universe..

Sounds good will it work

Really log vaps mil sakte hau h kya

Can you plz explain I didn’t get it

You dont first all you are not experienced in the field of the space time continum and you could you upset the already fragile and multitude of alternate realitys that have looping due irresponsible ones who somehow gotten the technology causing another altered time frame there are a disarray multiple reality which are looping in earths 4dimensonal time frame time traveling is not for a vacation or just to get a joy ride its a serious and complex reality not be joked about it is a real thing and certain individual have are upset the balance of earths original time zone note now the gaurdians of this region of milky way the galatic order of the light keepers Angelic gaurdians of the (names with held)are working over time ooh nice pun (over TIME) ha wow to restore Earth back to a original time continum

Who said I want a joy ride, my life is devastated even my kids are suffering, I want to commit suicide but can’t leave my kids back, Being captive for most of my life, if my life is changed nothing will be disturbed, only thing happens is 3 life’s will be saved. And more so over I don’t want to travel I just want to send a message to myself in my past plz on the date of 30th May 1996. My life is ruined plz help me, it was my dad,brother, sister who pushed me into the dungeon and my husband and his family took over the charge of torturing me. Nazneen

I want to go back in time and tell my 5 year old self to burn the creepy dolls that my mom bought cause there is demons in it at the same time I will kidnap and torture my dad right now go back in time and show the younger version of my dad show him what will happen to his future self if he don’t get rid of those possessed objects and keeps letting my mom buy those antiques I’m 18 now I’m single no girlfriend no friend alone nothing very depressed too and I try to remember the positive things that happened in my life which there aren’t many tho but the demons keep squeezing my memory brain and my mom keeps on making so much loud noise including her damn mouth I have attempted to burn the demonic dolls but I only burned them for a minute or two with gas cause I was worried I might accidentally set my whole neighborhood on fire but then my mom threw it all in the recycle instead of the trash so the demons just keep bothering me its driving me nuts he he.

Access to a Quantum Computer Network on the web would be a good start. A series of ChatBots and webhook sites strategically placed in not only space, but in time. A series of algorithms and I think information can be transferred backwards to ones self…

How do we know that there are no horde of tourists among ourselves?

How do we know we’re all not tourists?

We’re all time travelers. We all travel into the future daily. 1 second at a time. Lol…

Agreed! I had the same thought!

Excellent question

If is possible, I would like to go back to: January the 1st 1975 & relive the 70’s as I prefer that decade to the awful one I am facing now, Back then We had more police our streets & left our front doors open, Those days were far much more better .

https://3netra.co.in/61-2/

Please do comment on my blog post regarding time travel

how about you ask the flash to help you

I need the time travel so I’m fails so many times i love time travel i have to go fast and future so i have no idea im travel is a my dream so my dream solution plz say me i have time travel so please help me someone please…..

I think you are over reacting

When we look at the stars now it is what they looked like years ago so what if we go to the stars and look down?

You cant go to the stars. It will just take billions and billions of years to go even to the next nearest star than our Sun- proxima centuri. Sorry to say, but do you think that you will be alive all those years??

You can do that without going to the stars… our planet reflects light as well thus making it visible from other parts of the universe…. has the word “reflection” crossed your mind ? 😉

Contact me on my hangout I will help you [email protected]

bro just time travel its not that hard

Please help me to time travel, can I see myself when I go back in time like Harmaini sees herself in Harry potter?? Or can I send messages to myself I know the particular date when to send. It’s not the mistake I had done in my past but it was done by my father and brother who are safe, happy enjoying their lives,my life is totally ruined Please help me. Nazneen

I want to go back in time to save my wife .it was a bad mastake she died .that could be changed i need to go back and save her. Please help me.yours gordon sutcliffe

Would love to hear more how it’s possible, as I am really so desperate to go back in time. I lost my wife 6mons back because of COVID and I will do the impossible things to make it happen.

DMT Experience

what is that?

Dmt experience. Time travel, out of body and sometimes superhuman capabilities.

Jump into a black hole

We have to lose something(the past) to gain something(the future) in time travel.Time cannot be played with.Am I correct.

you need to have d e t e r m i n a t i o n

Time machine is possible

speeder than light LOL

speeder than light cuz if the light break it limits it will move backward in time

Don’t Just don’t disturb the past

I want to go back in time and see my dad. I miss him.

mee too raina I lost my father the day before you posted the comment 18th may, crap it hurts me so much. I would rather die to bring those moments back….

Everything is connected . Time isn’t real .

It is universe we travel to and not a time line in one universe

Ask trump….Mandela effect…. dmt 5th dimension

u need an X-WING starfighter and a lightsaber to fight the knights at past and a R2-B2 to track

The fact that no one has time travelled to the past is the proof that time travelling will NEVER exist.

Others have. Portals open most of the time. Example: Miami Fl. Magnetic Material gets bombarded by the sun. Which fractures and formed portals within that area. Ley lines can lead to the portals of travel within miami for just to start. One can laugh or wonder if. In my experience jumping for the better the word of it (Movie Jumper) can be done. You can either Teleport or Time Travel. Our sun open these portals everyday. The best time when Sun spots start to emerge. All that electrons traveling at light speed is enough to rupture our magnetic fields on Earth. You will return of course. Like water on a lake or an ocean time will corrects itself. Your inner clock is your ticket back home. With a little math,fourth dimensional thinking,a magnetic meter, the right location,history research and luck. You may get to expirence it. First clue….cold spots…it may not be a ghost.

Plz can you help me please help me you can save my life

I wish I could help you, I can sense your sufferings.

You need a bag of hyperlink modules to start, then nuclear beepbeep gatangas, when you have that come back here and I will tell you what you need next.

You need high voltage beepbeep gatangas and a large broonasic magnet of about 450 Gauss, come back here when you have these and I will tell you the rest.

you need an old fashioned police box

If you rotate the center of the earth in the opposite direction, then the whole earth can be moved back in time, on the other hand, if you move the center of the earth and change its position by separating it from the part of the earth, then you will be able to time correctly. Let’s reach the other side.

How I could time travel any time travel machines inverted

give audition in the flash series..

I think that to go back in time you’d to travel faster than the speed of light since time stops at the speed of light but if you wanted to go back to say mlk’s assassination you would need to go at least 10 times the speed of light

You don’t want to, the moment you wrote that message is a historical point in time.

When time travel is possible, you should d̵͔̮͉̣̯̳͌i̩͒̍̆͟ͅs͎̲̖͙̺ͬ̽̊͆͢r̖̹͆͂̚͘ê̛̫̪̱͇̘̩ͬg̖͉̤͚ͭͣ̊̌͜a̯̗͚̬͍̱̦͑͂͒͡ṟ̝ͦ͗͘d͋҉̪̖̥͔̟̟͚̻ ͎̬ͧ̔́i̧͚̫̻̇ͮͫ̆t̩̻͉̩̘̰̠̫̓̂̕ ̦̻̳̦̉͆̊̇̀i̴̗͍̞͙͇ͣ̈́mͦ̑ͦ̚͏͚̜̬̹̘̟̭m̱͕̻͇̮̠̰̼ͫ̌͆͡e̢͈̜̱ͩd̵̦͙͔̭̹̃̿̈̚ͅi̛̖̬͓͚̩̝̗ͯa̦͎̭̣̭̘͔͙̅̏́ṯ̴̟ͥ̀͗e̵͎̭͓̟͗ͨ̂͒l̼͕͕ͦͦ͜y̸͙̯̺̘͉ͣ,͈̻͙̭̺̘̞̑ͫ͜ ͔̗̣͒͜d̶͇͚͉̦̞̗͛̍o̞̮̻̲̜̠̒ͩ̈́̀ͅ ̲̙̦̮̺̉́͂̏̀ṋ̞͖̌͠o̬͕̯̩͓̮̫̝͛ͩ̐͛͜t̼̙̿͊͆̕ ̲͚̲̬̦̗̐̀m̢̹̜̭̠̬͗̆ͣą̲̺̻͈̹͎̈́̇̉͛ǩ̜̪̱̀e̜̳͔͉̣͓̓͗͘ ̉҉̲̞̘͈ͅc̴̦̣̝͇͈̙̋ͥ́o̫͇͇̘̻̠̹͎ͯ̀n̺̹̣̦̔̇̾͢t͚̹͚̙̞̪̗̺̄͂͜a̞̗̖̻̩͉̋͛̆͘c͙̙̎͘t̻̠̣͉̹̠̣̲̐ͧͩ̈́̕ ̶͕̗̬̿w͓̞͍̹̰͖͉ͦ͐͡i͎̞̾ͦ̃̈́̕t̜̺̖̭̍ͦ͞h͙̰̬̖͎̰͛̇ͮͫ͡ ͣͯ͏͕̻͚̹̺ā̱̙̝̦̤̼̥͡n̶͔̜ͥ͆̌̋y̷͓̻̺̺͉͇̻ͨọ̱͙̜̈́̉ͣ̔͟ņ̦̟͔̜̫̗̒ͬe̡͕̮̓͂̚ ̡͓̘͚̭̹͔̉͐͋̽t̖͍͚̝̬͈̝͌͋͘ͅẖ̗̖͚̼͔͕͆̓̾͜a͈̣͍͕͍̋ͦͩͭ͢t̖̪̤̳͎̱̏͡ ̛̻̠̼̬̓ͫl̶̞̤̣͔̗͔̂ͅö̹̞̦̖͚̫̜̱́ͯ͠o̧̯̱̪̓ͮ̋k͉͎̝̻̓ͧ̕s̤͈̪̍͟ ̤̞̳͔̝̪̟̹̔̂ͨ͜h̛̝̲̰̻͗̅̏̃u̜̙͐̇̈͝m̧̞̮̟̦̳̟̊a̸͓̺̲̼̜͊͛̐n̶̳̮̒.͇̻͚͓̳̺̜̱͋ͬ͗ͩ͢

It’s Close I can feel it

Yes it becomes a history but my life also in the past changes and the present also with it. The way I’m suffering from the pain and want to end my life I’m 100% sure at least sure no one around me is or was as hopeless and horrible as my hubby I’m devastated I really want to send a message to my past it may not start but it will definitely change. I was forced, not given any option, my father and brother gave me wrong information and had no concerns for me. It was just survival for me. I repent for not killing myself when I had time, but now if I have a chance why not. Now when I’m out of my marriage I come to know a guy then had feelings for me, was madly in love and wanted to ask for my hand, now I want to inform my self and change everything plz help me.

I too would like to go back in time. I just wish he lived a happy eternal life. I would just like to repeat to come back in 2020.

I heard from a guy in Idaho that time travel is possible. You’ll need to go online and purchase a pogo stick looking device and make sure not to forget the crystals.

I think u need a black-hole-proof spaceship, go to the centre, escape the black hole and viola! You are now in the past. If you can’t escape, then you’d travel to a time where that black hole didn’t exist.

Believe me you time travel! If not physically then you do mentally,like you through dreams.

Though they sale it online, it would not take the chance. It is as simple as beating the speed of light and having some system to send you to the time you want. Time however is not real, and were just traving universes. It will all be in the open in 2028 according to other travelers.

All you need base on how to travel to time is very simple but had to find firstly find a way to get to space through a space rocket secondly find a very perfect consifigration for traveling to tiTme then find a very fast rocket that could create a form of force reaction in space in order yo enable fast speed in space for the break through of non gravity in space and make sure that while doing all you activities is not far away from planet and not also to close to planet earth and make sure that you are with wristwatchs whose time is set disame then you can to the future

Man you can get all you need for too build a time machine in your local store man, man I sure wished I’d kept mine but it frightened the heck off me man, sometimes when I fart I find a grape in my pants

time travel is a fake, baseless and delusional idea. If you believe in that crap then tell us if we are living in the future or in the past. To travel backward the entire system has to return all along with nature and events, it won’t be for you alone except time travel only happens in the mind.

you would need to get about 1,000,000 pounds of silicon and then somehow conduct enough energy to make 500 cars run without an engine and then go to a nuqular power plant and somehow make a portal. but the whole world could go out of orbit if you do that so I wouldent sugest it.

Time machine is good and bad because,with the time machine you will know about your future which is not good.

Is time travel actually a real thing because if it is then I need it because I am trying to go back in time to fix all of my mistakes

So what if time travel is the reason that we now believe there are other realities in our own world.this could be that a Time traveler we could only go back and couldn’t come back, and on doing so if you do something to change the past in stead make a new reality.making other things are deferent and ours realty stays the same . sometimes reality gets mixed up make the mandela effect that we see today

Time in the future it is faster then now. The past is slower so you can travel . It is up to you. One way is to meditate. You can travel and see any body you want right now. You can fly faster then light. That is one way. You go to the future. To go to the past you sleep for a long time. Some time you go to the future or the past. Your heart well stop and your body gets cold. Sometimes you can control it sometimes you can’t.

but how do we know that is really true ? i mean i want to figure this out, i want to time travel, but how is it that simple ? so many people have been trying to figure this out for many years and its that simple ?

Yeah what if you get stuck in there what do you do than

You cant go there in the first place. Dont worry. With current technology, we will only end up messing some few microseconds. Highly doubtful, if we can end up getting the news of travelling hundreds of years in our lifetime.

wait what would happen if someone saw you while you where in past/future i’m curious

Time is an illusion based on perceived reality and is only relative to our limitations. Time isn’t what it seems and all things can’t be figured out

Im on a school computer looking this up and i found this article and scrolling trough it and ive not heard one statement here as good as yours bro

This is blowing my mind people, then I see the school boy on the post. Great stuff, whoever reads this is already capable of travelling through time. Think about all people who have posted on this thread, now think about who will read mine. Now think of those €opposite trolls $ who never ever bother posting on you tube thread etc. But ONE comment from one of the time travellers who wrote on this thread. So that opposite troll is me,I don’t normally post.however because of previous comments I’m posting here. And I love the DMT shit I loved that and lived that one out in real life,,,,another day.

So my point is ifOne or two threads have made me write this….then what will my post make others write , think…..then I could travel back and not write this…. then what. Love the conception of time how can u travel something that doesn’t YOU perceive to be time, like a train can only run on its train tracks, a car can only drive on a road etc It’s posibble I know it is. Sometimes when u have fun times moves swift but locked in jail it goes snail pace. U c me. I write letters to myself from past from future. Remember everything that happens in present becomes part the past. But the future is what you hold in your hands. Question is, now you know….what the f are u gonna do about it?.. 01/04 ==== 21

Hahahah only realised school boy is named BIG dick pissing myself laughing I gotta go pee. Respect certified

so not halal mode

True so were not traveling in time. It is just different universe (on what we call) different time, day, tears, etc.

You would be scared for life

you will desepear

Maybe it has happened before and we just don’t know that they’re from the future. If people in the future time traveled, the would know that it’s dangerous to mess with the past and would pretend to be part of the past.

I believe time travel is already possible, however we cannot fix past mistakes without altering future predicaments. Say we stop JFK’s assasination, that would completely change the future from that point forward to one none of us can know/guess or conclude the effects? Other time travel purposes go to the future I think that from now our world will die off before 2096 basdd on overpopulation, global warming & polution as such creating islands of plastic waste in our oceans. The best thing my opinion go back to the garden of Eden, kill that Serpent Satan before he tricks Eve into the forbidden fruit. Then let God raise, enlighten & teach us how to be humanly sustainable on his planet & I guarantee technology & smart phones? Ain’t no part of it!!

Time travel possible but one n only theory of Stephen hawking

How it is possible to jump in time …??

Many ways. The most used is creating a black hole which can be done in a few ways. 1) traveling forwards or backwords faster than the speed of light 2) been known during heavy lightning strikes. Each way is a fast movement that opens the black hole. It has been done by the Government since the 1980s though they claimed they never beet the speed of light until 2002. However, Time is a illusion and their for we are actually traveling different universe that are differnt than ours even if the difference is by 1 thing. Each universe may have (what we call) different time, days and years. And each time we change that time line we created a new one. It is belief as CERN has said they destroy 5 universe, that they can travel to them. Since 2012 it has seem we been shifting and is now belief they have possibly came together. The event is known as The Mandela Effect.

No one has the right theory in my thinking. Only a few things are wrong. It is universes with (what we call) different time, days and years we are traveling to and not time itself as it is a illusion. Their is no stop to how much we can do, or where we can go. No limit as such say.

There is no God. No magical serpent or Garden of Eden ever existed. Basing a scientific theory on archaic stories does no one any good.

You choose a hopeless eternity. I choose hope through the promise of salvation through Christ for those who believe. You see, I have child in heaven. Thankfully, have a hopeful reality that I can embrace. There is a God. Our known universe is only 14 or so billion years old… is it mathematically possible that random molecules out of the Big Bang mixed in just the right way from to form a complex cellular organism… with DNA… and result in humans and such diversity of life forms? It’s naive to accept this as a result of chance. Think about it. How is that remotely possible without a creator?

Hahaha. You make it seem as tho the big bang happened, and we just popped into existence? Naw it’s called evolution baby, we started out as microscopic organisms, seriously, when did you drop out of school? But that’s like saying a some guy writes a book to explain away natural phenomenons that they were to stupid (un-evolved) to grasp and the concept good and bad and the eternal damnation, And thus, the Bible, and boom, everyone now was made by God, hahaha. When you can prove he/she exists, and that the Bible was a autobiography, and not just some twisted piece of Fiction, that has no real basis in reality, and cannot be proved to be more that a work of Fiction. Rather than being used as the16th Century control tact, ‘be good or you’ll go to hell’. But I guess that’s what they mean when they say ignorance is bliss, (maybe if I was as ignorant as y’all believers I’d believe to). But I can’t see how a ‘GOD’ would ever ask one of its creations to kill another.. Genocide, Crusades, all the ethnic cleansing.. All In the name of God Almighty! Hahahahahhaaa. Aliens are more believable than this shit, and theirs no proof they exist either. Hahahahaha. Fug’n Bible thumpers. ‘Step out side your faith and see the world for what it really is, a complex organism, mad of gravity and dust, quite a unique specimen! And we, yes Bible bangers, this includes you, are destroying it like the bubonic plague.’. ‘The end is coming and it’s our fault’

Have you taken the time to read The Old Testament and the prophecies therein that came to be ?.

How do you explain that ?.

My last post should read GS not G

You have not had an encounter yet with God. Don’t be so certain on yuour theory of evolution. He came and shook my reality to it’s core. Made thing possibly that no one could ever explain.

What are you talking about? Ur so wrong and funny in every way.

BlissfullyInformed just told me his comment was all an April fools prank. He believes in Jesus and was just fooling.

Time travel is very much possible just as you decided to come existence in this century meaning one can decide to be in another time zone . life is all about numbers, you just have to work on numbers

I’m pretty sure ppl don’t decide to come into existence. If that were true I wouldn’t be replying to your comment.

Un like your other reply, I understand what you mean. Each timeline (or universe as some see it) can easily be traveled to at will. No different than traveling threw your time you want to visit.

Science has proven a few things from the Bible is true. God does exist. Christians are confused with time and what it says. For a example. God created the world, as science even belives it was God who created the big bang, yet the bang has happen itself creating the moon, planets and stars. Christians also fail to understand chapter 1 and 2 of gen. spoke of two different creations which can be why we see dinosaurs before humans as chapter 1 spoke of animals first and humans 2nd. Their also was different time than, as without the moon a full day is 6 hours. It would take 4 days back than to equal are 1 day. Time is lost and Christians are just confuse on that time. That does not proof their is no God. As they have already found the robes of Jesus and remains of Noah’s ark, it proves much did happen. The bible only has less than 50% of what was written.

Changing the past is impossible, because if we went back into the past, that means we were already there during the time you experienced it.

We all know how to get into time travel but how do we get out……..

You don’t need time travel – all you need is life. And what is life? Life is the evolution of the impossible into the inevitable over an infinite amount of time.

if it is shown that if something, such as a solution to a particular class of equations, were possible, then two mutually contradictory things would be true, such as a number being both even and odd. The contradiction implies that the original premise is impossible.

This is called proof by impossibility. Thus if some traveled back in time far enough to kill his grandfather, we have the contradiction and therefore it is impossible.

You could argue that he would be able to time travel, but not kill his grandfather. However almost anything a person does going back in time would cause the same contradiction, thererfore it is the traveling back in time that is impossible.

Actually, it probably is possible to travel back in time, however to do so, you would also have to travel so far in space that you cannot see anything that happened before your current time due to the speed of light, because this to could affect the future.

The reason I am here is that, i really want to go back the day when our matriculation exam was just finished. Everything around me is peaceful and happy. Currently, I am living in dire situation. People are dying outside on the streets. Smokes everywhere. Everything is in doom. Ah, yeah. I really miss my past. If you are reading this, you can judge me in anyways. I just want to live peacefully and happily.

You must live in Portland

I entirely know what you say and how you feel, Robin. I am totally convinced that future is no promise to offer a better place to live. World is becoming unnecessarily more complex and more horrible and more insecure. Therefore, travelling back in time to a point where things were still far away from such ordeals is what I aspire. But I think if it is possible to travel back in time without the possibility of carrying our lived experiences with us, it will be useless as we will be repeating the same mistakes over and over again. Now, this begs the questions “in what type of physique could we imagine ourselves back there if such time travel becomes possible? That is, becoming younger again in a physical regression (as I said this would be a torture without having learned from all these later years)? Or appearing at our desired times in our present physique and age? I believe the most ideal one would be if we appeared at our desired point in time at the same age that we were at that point of time with a good feeling of our later lived experiences.

Mam all u need to do is just run faster as much as u can or visit the black hole because in both condition time just slow it down ….

Time travel is simple. If you do happen to travel to the past you create a new time line not affecting the time line you left. In essence you going to the past is now your future. Even if you were able to return you may never know if you remained in your time-line or created a new one. So even if you changed something in your travels it would happen in the future not the past.

Sorry time traveling is not possible, there is no way you can go into the past or the future ‍♂️. You can only be in the time you are already in.

Incorrect. General relativity allows time travel into the future. You need a space ship that can travel extremely fast though, approaching the speed of light, or you need to get close to a supermassive black hole.

It is travel into the past that there is no known practical way to do, and is probably impossible.

So what happens when we Die? Where do we go? I want to go back in time so I can meet my childhood friends…

Simple question from a simple mind:

At what point, when a person says they are from the future, do we stop throwing them in the funny farm and actually start listening??

When they show actual proof. Not just some random prediction of the future.

I don’t believe that “glimpses into the future” could be possible. If it were so, we could glimpse blueprints of the future that we could bring back to the present and build before they were invented. My personal.beleif is in any time frame there is only one active time which is the present. The past no longer exists and the future hasn’t occurred yet, so there is no such thing as ‘time travel’ except for the frame we are in now.

First off time is not real we make time if you travel anywhere all you are doing is beating the Earth speed try this for a mathematical equation the Earth travels a thousand miles per hour you’re not beating human time that is your own equation the Earth travels a thousand miles per hour a space shuttle travel 17,000 mph you can beat time that you made so time is not real you are only beating the Earth speed if you go in a space shuttle and go around the earth 17,000 miles per hour the Earth only travels a thousand miles per hour plus it has all types of gravitational pull from the Moon Earth’s access on the til t you figure out the mathematical equation I cannot time travel is real if you can beat the Earth speed and we can it has nothing to do with its 12:00 it’s 1:00 that’s not real time is made up as a mathematical equation you can beat the Earth speed you can go back into the Earth’s time in a space shuttle but you’re not beating anything except the Earth’s speed think about that one time is not real at all all it is is a mathematical equation think about that one real long

What I’m trying to say is this a space shuttle travel 17,000 mph the Earth travels a thousand you beat it 16 times faster that’s all you did you’re not beating any time you’re not beating 1:00 you’re not beating 3:00 all you’re doing is beating the Earth’s time you can go in reverse around the Earth 17,000 mph okay you can go forward with the Earth’s centrifugal force 17,000 miles per hour you’re not beating anything you’re beating a mathematically equation that we we created astronauts been traveling time for instance for years and haven’t told us because of the space shuttle that does travel 17,000 mph it beats the Earth speed 16 times a boggles my mind you have the Earth access the moon gravitational pull but you can get in a space shuttle and travel 17,000 miles per hour and beat the Earth’s speed 17 times think about it

If any scientist or anybody can actually answer this question how do you set up this equation with the Earth spinning a thousand miles per hour you have the moon pulling gravity the Earth’s access on until I want to know tell me then wondering for a while this equation popped into my head about 2 years ago I’m not a math whiz or anything I just thought about it weird how the mind works I’m not into space or any space stuff at all I’m Samanthas boy friend John antos wrote this

I liked your post and the knowledge you given. I also written a post on Time Travel.

how would any of that stuff be true because e’*34+Em would stop all the forss of vissecs and how would we do it if you now what i mean??? also thanks for the scuff for my project

I would love it if I had a real life time machine here with me now which could take me to anytime I want, the past, present or future. If I had a time machine here with me now, I would go to the past in September 2004 when I was born and give myself to another family that is actually rich and not this horrible family that I have now.

that not nice

Close but not quite right scientists of the idiotic variety, yes, you don’t want people to travel back in time to mess with their own pasts, of course, but you say it’s impossible, but it’s not, and I’m always ignored with my crazed crackpot theories, so what’s the harm in telling the truth as I see it, while it could be possible to travel to the past, here in lies the problem with rewriting the future, while some believe it’s possible to travel back in time, but it’s very expensive and definitely a one-way trip to the future or to the past. Basically Doc Brown got the mechanism for time travel almost right but the energy out put needs to be quadrupled instead, allowing for the ‘physical item, being or vehicle’ to transport through time without killing the time traveler in question. Wormholes are unpredictable, until warp speed for spaceships are a thing, it is not possible for the space ships to achieve time travel, unless they want to enter a black hole, which I would not recommend. as you need warp speed to survive the emptiness of the black hole, without being ripped to shreds. Say for example, Back to the future 1, the timeline doesn’t erase it continues on without the ‘said time traveler’ in existence basically the Marty from Wimpy George’s timeline did time travel to the past and messed with his parent’s meeting so to speak, but never return to the same timeline therefore Marty A went known as a Missing Child in timeline A, while it continues on without him, however Marty A became Marty B/C, in the Successful George Timeline. So that is what I’m talking about. the timeline changes only for the time traveler themselves the ones who are left behind don’t experience a thing of timeline rewritten-ism, as it would never happen in the first place. The other thing is if you want to mess with your own childhood, to make a better life for the past self, the key thing to remember it’s not really you. It’s an alternative version of you, that you interfered with. creating a parallel timeline to it’s original, yet slightly different. Yes it would be awkward to raise yourself. but as long as you are staying in the past, nothing should happen until the age you traveled back in time, unless of course you touched your past self and suddenly de-aged and merged with your past self, is an option 1, option 2 the future self explodes spreading guts all over the place and therefore the past self, of you became a murderer of your future self, I am more inclined to believe option 1 as option 2 seems a little too out there. Basically you would have two memories one of the former timeline and one of the current different timeline. Still traveling through time is truly a one way trip and if you want to travel through time, you would need some time travel mechanism, the way you scientist talk is basically a dream version, or an OBE version (OUT-OF-BODY-EXPERIENCE) which is basically a vivid/lucid dream which is not true time travel, the true time travel is based on the BTTF Trilogy not the idiotic versions you preach about. I believe I’ve said enough.

Mystery solved and I will explain, I was in a coma 3 months and I experienced things, I traveled time forward and backward, it is not a one way ticket. Movies and songs are recorded on magnetic tape in a VCR tape Cartridge or Cassette tape, Magnetic tape recording works by converting electrical signals into magnetic energy, which imprints a record of the signal onto a moving tape covered in magnetic particles. 3D life on earth(a movie), and the Magnetosphere all around earth coming from the core of earth(MAGNETIC ACTIVITY) without Atom Made Tape, is like a movie on magnetic Atom made tape in a VCR tape cartridge. Revolution and Rotation is the motor(VCR).

This is why people have those freaky Deji’vu feelings like they have lived this before, BECAUSE YOU HAVE, and how people can be psychic, and how there is Prophecy in the Bible. When a person dies, their Spirit- MIND(Thoughts, Feelings, Urges(Physical and mental personality)) breaks out of human body- a stopped heart is what releases the spirit from the human body. Then the Soul(Life) with the memory of your existence in it breaks out of spirit and goes back to your birthday with a erased memory, meanwhile your spirit goes back in time to when you were a teenager starting the mental puberty, maturity from that adult spirit you died with in last life.In that old movie Star Wars or maybe it was the Empire Strikes Back, there is a scene where Princess Laya plays like a 3D movie, that is EXACTLY how its of life on earth.

If only wish I could undo everything what I’ve done wrong in the past, I’d be more happier

And that my friend is absolutely what you do not or would not know. Everyone focuses on what they don’t or haven’t had rather than what positives they do have around them. To change the ingredients of a past life only changes the flavour you have in this life, it does not make you happier.

No, travel to the future is not possible. Like, future is unpredictable and always have been so give up on that field

Already has been, and has been proven.

Time travel is not so possible for every one , but there are already time travelers on earth #@*

Who are these time travelers?

Depends if it is the Governments (they done it since the 80s), or if it was a Accidental travel, or a simple us creating our own machine. Either way, one can easily find storys, and other evidence with a good research. I have a website that shows the effects of change cause by time travel.

They are out their (done by the government since the 80s) but the future is open with time travel (told its open since 2028) so they travel back much.

Time travel 101-

Create a closed loop circuit around a full metal structure, hermetically seal it and bring O2, Use two tesla coils to create north and south poles. (Artificial Magneto sphere.) Make sure to pain the outside in lead to prevent any cosmic rays from penetrating the materials on the inside. (Radiation = bad). Connect a ball made of w/e with wires that alternate the current from the coils to w/e panel on the outside of the structure to make it move via inductive magnetic / electric Lorentzo (Lorentzo = ExMfield = Velocity. = Antigravity) Create Antigravity by using forces from the inside reactor. (Pressurized Mercury, and Tesla Turbine.) Then Move 10-100x faster than light depending on the charged field, Friction will be added to the electric field instead of the craft allowing the G-forces not to crush you inside. The field will take the pressures of outer space, The temperature of space will allow for super conductivity of the structure.

Eventually you will arrive in the future, if you stay in one place. but account for the movement of earth in your travel log. To see outside you will need a monitor / camera system, as any leaks through a viewing area will cause death by radiation from the cosmic rays from the field you have created.

The O2 can be used as a backup generator, through air pressure and the tesla turbine.

There are many different ways to make wormholes, but the curvature of space is really hard to calculate to send a machine far out to the end and create a link with the machine that wants to travel there. And leaving one behind to get back.

If you can imagine it, it can be done. You just need the knowledge of not dying to complete it.

U.S.S. Tourist, You’re a time traveler or just insanely smart.

You don’t need to go the speed of light. Human Time is recorded in the magnetospere as a movie is record, ed on magnet VCR Tape or a song on a record. A VCR or record does not have to go light speed to retrieve the recorded info. All of life is recorded in 3D by our Magnetosphere. My Analogy is imagine a VCR tape cartridge being the earth, imagine life on earth being the movie but in 3D with out adom made tape, imagine Rotation and Revolution of Earth being the VCR putting all in to motion- playing. That is how its done, the magnetosphere kills two birds with one stone, it protects earth and records time, human time is in a magnetic bubble that is why the Bible refers our time is different from gods time and this is how God the maker(PLANET OF UNITED SUPREME BEINGS) can flip through our time to know everything. By the way long before life on earth, he built the original 7 wonders of world(Pyramids) to Pump the Seven gasses into the atmosphere of this planet found in the goldilocks zone, so Life can live on it, and that life of all types is his technological cyborgs that grow and multiply on earth also he seeded it with plant, trees, sea creature and things that fly,. Anyway that above is how time is recorded.

Until recently, I thought my neighbor was a crackpot until he actually invented a time machine. He utilized an ordinary closet, and showed me the sophisticated (to me) instrumentation he had installed. I was very skeptical at first, until he offered a small demonstration and entered the time coordinates and energized his invention. To my amazement, when I opened the door, the clock on the wall was 30 minutes later than when we stepped into the machine. OMG!!! Destroy this thing before it destroys us!!!.

So happy to have my husband back after 6 months of separation. get any kind of relationship/marriage help you want from….Robinsonbuckler11 @gmail com………………………

I find it odd that people say time travel isn’t possible yet… If time travel is possible, it has always existed. Meaning, there is not past present it future, only our perception of time. What we know as past present and future have always been occurring simultaneously, so travel was invited the moment the universe wss formed. Dinosaurs are roaming the earth right now, and forever. A version of me is typing this and has always been typing this, within this perceived moment of “time” and time travel has always happened, whether or not we exist in that reality at the right “time” to observe time travel is the only question.

I find it odd that people say time travel isn’t possible yet… If time travel is possible, it has always existed. Meaning, there is no past present or future, only our perception of time. What we know as past present and future have always been occurring simultaneously, so travel was invited the moment the universe was formed. Dinosaurs are roaming the earth right now, and forever. A version of me is typing this has always been typing this, within this perceived moment of “time” and time travel has always happened, whether or not we exist in that reality at the right “time” to observe time travel is the only question.

Their had to be one point however, when it was created and started, and for that, there was nothing but the current time. Once it was created, than we had a pass, present and future to which we can go back to millions of years to see Adam and Eve with the dinosaurs or go millions of years in the future. However, given the events that changes, each time a new time line has been created. We also have destroyed the planet and repopulated many times in the last million years. Each event changed, or something we do different (without traveling) enters a new universe where some things may be different or the same. Today are universe are shifting a lot.

To be fair, even if it is a one way trip into the past, that doesn’t stop machines going back. We could send a machine back and order it to do anything we want and then tell it to meet us at a certain time in the future. We send it back, then go straight to the meeting point we agreed and then we’ll be able to prove if it worked or not.

I’m a girl who has read a book about seeing future through a box. So is it actually possible?

Time travel has been done on purpose by the Government since the late 1980s. From research, the mostly use kids, or future Presidents. Their are some cases where people have been struck by lightning or came across some tragically event that cause them to leave their timeline either forward or behind in time. The Mandela Effect is the current cause of how things go wrong when time travel is not done right. Click on my name to see the website.

Even as traveling to a location as a future or pass date is possible as what people here mean. However, as you said, it is numbers. Time is a illusion and we do not travel threw time, just universe that are different than ours. What we call time dates and months is what changes each universe. We are all from different universes today as they came together. The mandela effect is a fine example.

thx to eleon wont we soon be able to digitize our conscious being, then accelerate that data pass the speed of light some how then download it into some android or something…..i dunno…..just a thought

I want to go to my elementary school again. Someone help me out, I know its Idiotic but stil.. I am not good at science. As far I understood, 1) we can trace through time if we travel fast than speed of light.. I think memory os the only thing that is faster than light, Yeah I can go to Paris within 1 sec in my memory but yeah its illustion, i want in real 2) Through Blackhole – I think its Bermuda triangle

if you travel back in time you will still be your age now. That is how it worked with others. No one gets younger otherwise traveling to far back would kill you. No school would let you return to school as a adult so not possible.

Plz help me I just want to send a message to myself in my past and save my self from a beast plz help Nazneen

Would love to experience many moments in life again for the first time again!

I think that time traveling should be left alone, for the sake of humanity. There are some things we’re not ready for yet.

Well stephen hawking may be wrong. I mean, the study proved that the universe self corrects itself to prevent inaccuracies. So maybe tourists from past do visit us but we don’t remember them as the universe alters our memory. If you guys have read about Butterfly Effect, a simple mistake today may grow through years to become a giant disaster in future so if you think of it, oncoming tourists from future may cause giant inaccuracies. Imagine this, You have travelled to past. You brought two cakes for yourself, so you pay the shopkeeper 20$. The shopkeeper invests the 20$ in stocks, strikes gold there and becomes a rich businessman.His daughter goes to Cambridge and marries someone else than the person she was supposed to marry according to time. Can you imagine the magnitude of inaccuracy after 100 years? Therefore, whatever the tourists from future do, is corrected by the universe and we don’t remember it. Creepy, but food for thought.It also adds a special meaning to the word ‘Fate’.

How much wacky terbacky (i.e. weed) you be smokin’ JOE JOE?

Hmmmm…. As brilliant of a mind as Stephen Hawkins was, how is he so sure that he would even recognize hordes of tourists from the future? Almost everyone is aware of the warning of the Butterfly Effect. So I’m sure any future visitors Intelligent enough for Past-Time travel would be amply attuned to this.

Most future people coming to the pass (our time) seems careless and not intelligent. Most are taking FBI lie detector test and telling us what is happening in the future. That is a bad idea, because if you tell us (example) who is the next President, and the Government does not like the person they than can change that event to let someone else in (as seen in 2020) One should never acknowledge who he or she is or why they are their. Most traveling is to get knowing of the pass or to pick up certain things. Since are pass is changing, events are changing and are timelines are messed up, someone made a mistake. The Mandela Effect is a fine example.

Wow that’s great plz help me go to my past plz,I can’t do it by my own at least help me send a msg to myself in my past Nazneen

I think it is possible, but time traveling is really just changing universe created by different time lines. Our whole solar system is in a whole different place now and Earth is much smaller in this universe from the one I grew up end. Someone has already changed the timeline.

Roads? Where we’re going, you don’t need roads!

Youre wrong about your measurement of speed for traveling, in order for time to slow down, with inside an object compared to outside. Scientists proved that time with inside an object at an excelorated speed actually appeared to have slown down during the duration of time for the test. The speed was far less then the terminal speed of a rocket for NASA at 256,000 kms p/h.

In to the volicity of space. Generating a vacuum of space, could be no different the the actual transport of matter over frequency where in fact matter can be carried by sound. It is believed that an alien civilization harnessed this energy in the form of bolisks that where believed to carry the same properities and in consideration of harmonic resinance, the simularities could be used in order to carry large weight. In accordance with a documentry on theoretical science.

However the properties, present the fact that a working property controdicts your counter intuative theory of gravitational deceloration of matter to colide within itself to absorb all things into non existance as to the transfer of matter into energy, rather then your idiolisms of transfer between dimentional space to another destination that is not linked or the transfer between time that isnt, either.

However to reproduce the fabric of time within space in a practical measurement as I have mentioned, would put an end to all the lunacy of an unmeasureable field, which people fail to identify. Like running into a glass window. Only to not know what forcefield is present.

Time travel into the past can be achieved simply going faster than the speed of light.

The closer you get to the speed of light the slower time goes

If you reach the speed of light time stops

If you go faster than the speed of light it starts to reverse

Why does no one seem to know this?

Christopher Reeves did this in Superman 3 brah.

Any time travel, pass and future, is by going faster than the speed of light. It is said by reversing that that you can go back in time. However, I assume since the Government has done this since the 80s they have better ways (maybe tying in a date) and not having to go to a unknown date.

I want to send a message to myself in the past on a particular date plz can you help me, this means a lot lot lot to me,plz help me Nazneen

Why don’t we drop the declaratory statements that it “is or isn’t possible!” Until someone actually does so. Just say “maybe”.

People have and their are records both to the pass and future. The Government has done it since the 80s as part of the “star wars project” and are much better at it today. This explains the black holes in the sky of 2019, and the CERN destroying 5 parallel universes in 2013. We also see changes because of time travel events changing time. The Mandela Effect is a find example.

I want to send a msg to myself and my family in the past ,is it possible plz help me my life will be saved one who helps me saves me and my kids from a pack of beasts,

The worst idea ever. We all want to do this and where does it stop. A lottery win does not sound bad if you knew the actual location, time and place. After a while though, would you not want to write that hit song, become the author of the Harry Potter books, stop 9/11? The idea of giving your pass self (a time time travel was not proven) information of the future could change things in a major way. This would cause one small thing to change creating many others to change. This has already happen in simple ways of the The Berenstein Bears changing to The Berenstain Bears. This is a small event but this event “The Mandela Effect” now has over 3,000 changes.

What if you decided to give your pass self information about a lottery ticket that would be a winner, bought late at night and he was hit by a car on the way to get it. Changes the whole future. However, If detailed right, done right, with no large changes, it may not effect much, but to know your being given info from yourself in a future time (when that was not known much or provrn back than) You would either assume it is a joke or you gone crazy.

I don’t want to win a lottery, my decision about my career and studying was right but my family and their cruelty has put me into this worst condition I just want to go back complete my studies and live a life like a human not like a animal or slave,help me plz Nazneen

Can someone take me to 2013? i can pay later to all of you in bitcoins so its a win win and you dont need to do anything, just wait

LOL but still complicating on my side

You travel in your dreams where time and space colloids ..That’s y sometimes the dream which you dreamt might be a 10 mins reel time but you felt dreaming whole time like 6 to 8hrs .. Probably even traveling to parallel universe

I agree. Dreams as we know it is not a simple sleep. The part of the brain we do not use while awake, we use at night. This is the phenomenon part of the brain that can do thing we feel a human can not do. We of course use less than 30% of our brain. By the use of 100% of the brain we would use both sides and be able to do common things such as read thoughts, move things without touching them etc. The idea of using this side of the brain, would be the theory we can leave our bodies and visit different universe, see what could of happen shall we done something different, and even see future events. This may be why we notice different memories to some things as we could of held some from another reality.

It would be very weird, however, if we were trapped in that universe, or another body and fail to return to ours. Is that how people die in their sleep?

i just fell like going to late 70’s, where i can see majority of family.. i am willing to trade life for it…..

Time travel to the pass is just as common as the future. However, as both has been done it is NOT travel threw time. Time is a illusion we created. We are actually traveling threw different universe with (what we call) different time, dates, years, etc. The Mandela Effect is a find example how traveling threw different reality’s change the time lines.

As a add on to the above, Time travel is not a theory, has been proven, and has been done by the Government since the 1980s. Their is many residue in our history to even show some time travel storys to be real.

Where can one get a reverse watch, is it really possible to go back in past with its help, is it sooo easy ,plz help me ??????? Nazneen

US20060073976A1- search this patent number,this describes the process for time travelling,I really don’t think magnetic energy will work,maybe heat focused on a specific point could expand the fabric of space and make a hole in it.even then I will the hole take you to another time.it would be one thing to time travel but selecting a point in time would be impossible.you could only travel to the time you device was built?

Is there a watch which back travels in time or reverse time watch? Is it true? How to get one? But with that how can I send a message to myself in my past, plz help Nazneen

I don’t believe such a watch exist and their are plenty of smart minds with huge funds trying to travel.right now there are only theories.

Thank you very much for your response. I just want to send a message to myself in my past. Nothing much will be changed but 3 literally dying devastating lives will be saved. We are suffering for the mistakes and egoistic arrogance of others so if possible plz help me

Traveling back in time isn’t just a when problem, it’s a *where* problem. Where was the place you’re standing right now a thousand years ago, or a thousandth of a second ago? There is no useful answer to those questions, so there’s nowhere to travel back in time to.

Traveling forward in time? You’re doing it now.

when you step through a door is time lost when you come back through? lets say you return days Later how much time did you loose. what exactly is Time,.? is dialation a safe way to return ,. a Blackhole will assist you in in travel, the question is will you arrive safe,.

Traveling back in time is impossible. 2 reasons why that are never taken into account.

A) The stuff you are made of ( subatomic material) is being used by something else. It I not like you are a facsimile of the already existing material. What you are made of is exactly the same existing material. The problem is exact stuff can not exist in 2 different places in the same point in time. You will either : Decompile or fall out of phase with the universe. Both bad outcomes for the time traveler.

B) Lets look at it from logical commonsense. You have a bar of gold . You intend to send the bar back 1 second in time. Now you have 2 bars of gold . You send those 2 bars back one second . You have 4 bars …… do that 50 times . You have over 900 trillion bars of gold. All made of the exact subatomic particles. The more the bars back the more the existing mass of the universe increase. What are the consequences of changing the mass of the universe . Hence the paradox . Information can not be destroyed., It also can not be created.

At least this is the way my brain perceives going back in time.

Time is a function of change. None of the 4 forces The strong force , The weak force , Electromagnetism and Gravity can not work without time.

I will figure out time travel one day but only for the past.

I wish I could travel back to 18th of June to save my mom.

Is time travel really a one way ticket? Theoretically, if you can go one way, you should be able to go back.

Time is not one way. It’s consequences are however irreparable given certain circumstances and is not something that should be taken lightly or thought of in a manner of disregard. I’ve only very recently decided to take to your social platforms regarding space and time.

You can try finding me on Instagram. I’m not familiar with these platforms to better direct you there. My Instagram name is johnrvh

On Twitter it seems to be @_JohnRvH

If I go forward I will have to pay extra bills and taxes. I don’t think I can afford it.

You’re the first person I’ve come across in this timeline that has a sense of humor. Thankfully, going forward is not possible if that future hasn’t been created yet.

timetraval is no joke if its created the whole universe could go out of orbit.

Cauchy problem converging to non minimal terraces as t → +∞

Stephen Hawking may he rest in peace a genius but not all knowing. As far as he knows we haven’t been flocked by tourists, in the same maybe these UFO sightings are actually time travelers from the future coming to the past to view how we really lived why things really happened the way they did, etc. To limit the imagination of possible and impossible is wrong then you create fantasy. And we have learned from history that there is truth in fantasy. I.e. the different mythos of the different ancient cultures from around the world including those of the Norse. Improbable and probable should be more appropriate. It’s possible because it can be imagined improbable die to the right math or this or that not existing or matching up. I also believe that if time travel to the past were possible that the changing of something in the past would create a new timeline running current with your timeline at which will inevitably collide and will cause the collapse of the universe at which point a new universe will be born.

so i think the speed of light is only relative to deciding a point of destination -initially- as specific gravity of destination needs to be ascertained to calculate the frequency needed to run an alcubierre-white engine to bend space correctly to cross space ‘quickly’, the point of reference may well be jupiter in our solar system for the fact of the moons that orbit it, i surmise that by using a ‘dead end ‘ equation that usually puts notable mathematicians into the outer regions by trying to solve it may actually be the key as calculations end in a loop of 4-2-1 ie 3N+1; this process of calculation creates a sine wave over time/distance relative to specific gravity of chosen destination – as time is determined by gravity therefore if the speed of light to a destination can be used to ascertain the specific gravity of a ‘body’ to visit ie a star or sun due to receivable resonant frequencies emitted by the body, then the constrictions of the speed of light do not exist other than to give a constant, by using the 3N+1 method of calculation ,once the speed of light and returning resonant frequencies of a destination are determined the calculation can be extrapolated to match the distance giving the end point -in doing this the sine wave required can be ascertained and be condensed to create a wormhole and allow the alcubierre-white engine to ‘bend or distort space enough so that the bubble you are in matches the required specific gravity of the destination – the frequency of the body nearest to the destination point should be used and resonated inside the bubble to create synchronicity of frequency and cause attraction i also believe that travelling through space require the ability to see things from different perspectives and it requires the ability to navigate through a series of what may be described as “Aims Windows” where your point of view needs to change inherently with a given position at a given point in the galaxy

Comments are closed.

Science Borealis

Blogging from Canadian Perspectives

An inclusive digital science salon featuring Canadians blogging about a wide array of scientific disciplines.

Associate Sponsor

genome-alberta-logo

 » Intelligent. Optimistic. Curious.

Intelligent. Optimistic. Curious.

  • Latest Show
  • Arts & Culture
  • Politics & History
  • Science & Technology
  • Religion & Philosophy
  • Going For Broke
  • Dangerous Ideas
  • Deep Tracks
  • Sonic Sidebar
  • The News From Poems
  • Ideas from Africa
  • Find A Station
  • Apple Podcasts
  • Amazon Music

You are here

Why are we so interested in time travel.

is time travel easy

James Gleick, a science writer with a special interest in the cultural impact of technology, recently sat down with Steve Paulson to talk about the cultural history of time travel and its enduring appeal for To The Best of Our Knowledge.

Gleick has written a number of best-selling books, including "The Information: A History, A Theory, A Flood," "Chaos: Making a New Science," and "Faster: The Acceleration of Just About Everything."

His latest book is a mind-bending book called "Time Travel: A History."

Gleick: I think the thing that really triggered the book for me was a surprising discovery, a surprising realization, at least it was a surprise to me; and that was that when H.G. Wells wrote "The Time Machine" in 1895, that was the first time anyone had considered the idea of time travel. I always imagined, and I think most people imagine, that time travel is an ancient idea, that it's always been with us, that for all of human history we had these fantasies that we all have today of being able to hop into a machine or walk through a door and find ourselves magically transported either into the future where things are going to be wonderful and strange or back to the past where we get to meet Napoleon or the pharaohs or Queen Elizabeth.

But it turns out that that’s not true, that when H.G. Wells came up with this wacky idea in 1895, he really was the first person to do that, he was the first person even to dream of it. And so, the first thing I wanted to know is why? Why hadn't people thought about these things before? And then the second thing was why all of a sudden was it possible to have these fantasies?

Paulson: The thing that's striking about H.G. Wells' time machine is it only goes into the future, it does not go into the past.

Gleick: Right. He's able to return home but he doesn't even bother going to visit Shakespeare, find out what Shakespeare was like, which is sort of odd considering Wells was an historian and was certainly interested in the past. But Wells was also, by temperament, and he said this himself, a futurist. That was a word that was not very common in those days. He was very excited about the future and felt it was important to be forward-looking and progressive-thinking and that all the smart people should be wondering what the world is going to be like and taking an active role in creating the future.

Paulson: Why do you think we are so obsessed with time travel? Is there a deeper reason here?

Gleick: Yes. Because we're obsessed with time. Because time is what we care about, time rules our lives. Time creates possibilities for us and also terminates possibilities for us. Time is a harsh mistress. We struggle with it every day of our lives and more and more now than ever in the past. So it's natural for us to turn to these stories to look for some insight or just to get some relief from a difficult reality.

Paulson: You say something else in your book — it’s to elude death.

Gleick: I think that's maybe the secret hidden motivation for most time travel or, for that matter, for most of our worries about time. It's our mortality we’re concerned with, and time travel gives us a way to invent, at least temporarily, a kind of immortality.

Paulson: It’s fascinating, just thinking about everything that goes along with death, not just thinking about our own death, but the death of loved ones. What is mourning, but in some sense going back to the time when the person was alive?

Gleick: Yeah. When I say time travel wasn't invented until the end of the 19th century, we can still remember ancient Greeks, in their legends, imagined the Underworld where when you crossed the River Styx to Hades, you were able to meet your ancestors once again. Now that we know all about time travel, we could think of that as a version of time travel. Any story that allows you to meet your ancestors is in the time travel category and a lot of modern time travel is motivated by exactly that.

James Gleick

James Gleick

is time travel easy

  • [ November 30, 2022 ] The Night Sky This Month: December 2022 Night Sky
  • [ November 22, 2022 ] James Webb Telescope Turns Its Attention To The Kuiper Belt News & Events
  • [ November 1, 2022 ] The Night Sky This Month: November 2022 Night Sky
  • [ October 4, 2022 ] Are Wormholes Fact or Fiction? General Astronomy
  • [ October 1, 2022 ] The Night Sky This Month: October 2022 Night Sky

Is Time Travel To The Past Theoretically Possible?

January 31, 2015 James Miller Astronomy Lists , Time Travel 0

Time Travel

Is time travel possible? People who say that that it is not should think again. After all, we’re all time travelers, scooting along through the space-time continuum at a rate of one second per second. It’s also fun to imagine traveling at near-light speeds to investigate the future, something that is already an established scientific fact. However, it’s generally accepted that time travel is a one-way trip, only going forward, and while there may be some truth to the assumption, it’s certainly not guaranteed.

Of course, traveling back in time also appears to throw up a number of time travel paradoxes that might seem difficult to resolve. These include the Bootstrap Paradox , the Predestination Paradox , and the Grandfather Paradox .

Nevertheless, Einstein’s equations do not rule out the possibility of backward time travel. Consequently, scientists and science fiction writers alike have devoted serious time and effort investigating this absorbing subject.

Time Travel Methods

There are many theoretical methods of time travel that might make traveling to the future or past a possibility. Let’s delve further into some of the fascinating methods of time travel that scientists have devised.

Travel  Very Fast

Einstein showed time is flexible and can be affected by speed, with his Theory of Relativity showing that as you approach the speed of light (186,282 miles per second) time slows down. Astronauts on board the International Space Station traveling at 17,000 miles per hour, for instance,  age 0.014 seconds less than earthbound humans every year. Relativistic time travel even rears its head for the constellation of GPS satellites. If it wasn’t for automatic corrections built into the system, geolocation would be inaccurate by as much as 6 miles (10 km) a day.

Build an FTL Machine

Going very fast will help you travel marginally into the future, but building a machine that travels faster-than-light (FTL) will take your time-traveling odyssey to a whole new level. Of course, there’s the slight problem that the fastest ever human-made object, NASA’s Helios 2 space probe launched in 1976 attained a speed of 160,000 mph in space. This, obviously, is a far cry from the 671 million mph that light travels.

Still, if traveling at 99% of the speed of light was possible you would experience 1 year on board your FTL craft for roughly every 7 back on Earth. At 99.999% of the speed of light, that figure would subsequently rise to 1 year for every 223 years back on Earth. Some have speculated that exceeding the speed of light might actually cause time to reverse. Of course, there’s the problem that when you attain 99.999 the speed of light as your mass becomes infinite making it impossible to accelerate any further.

Look Back in Time

FTL travel could also present us with the intriguing theoretical possibility of traveling four light-hours away from Earth, turning around, and watching the light from Earth 4 hours ago arrive. We would essentially be watching 4 hours of history from Earth being replayed as its light arrived. Even now, there’s nothing to preclude us looking back through time to observe events from long ago. Every time you gaze out at the stars you’re looking at history; you’re looking at things that occurred thousands or hundreds of thousands of years ago.

With a good telescope, you can watch things that happened millions of years ago. If you just want to look into the past 4.24 years you can look at the closest star (after the Sun) to the planet Earth. It’s part of a triple star system, and its name is Proxima Centauri . The next separate star system has a sun named Barnard’s Star which is 9 ½ light years away. So by focusing our attention on either of these two systems you can look 4 ¼ years into the past or 9 ½ years into the past, respectively.

Warp Drive, as described by theoretical physicist Miguel Alcubierre, involves moving a bubble of space-time through a relativistic framework. Unfortunately for time travel enthusiasts you are now moving in a non-relativistic way, and you may have two separate time frames, but they’re both running at the same rate. If it takes an hour to get to Pluto, an hour of time passes back on Earth. In other words, you may have traveled vast distances through space, but your time has still remained the same.

A wormhole is a hypothetical passage in space-time connecting two separate points, thus giving the traveler the chance to traverse potentially astronomical distances instantaneously. Furthermore, general relativity predicts that if traversable wormholes do spontaneously exist, they could permit time travel through relativistic time dilation.

However, there is no way to predict where the other end of them would be. Worse yet, theories seem to indicate it would be a one-use sort of thing, collapsing behind you as you pass through it. If it went anywhere, that would be the end of the journey – there would be no hope of return, and no way for someone to follow. We don’t currently possess or understand a method for generating a wormhole , but current estimates suggest that we would need the output of an entire sun to create one. With only one Sun in our solar system, which happens to be in use at the moment, I suggest this is not very practical, completely aside from the fact that we don’t know how to harness it.

Black Holes

Einstein discovered that gravity from massive object cause time to slow down. Therefore, while black holes will simply crush anything that enters them, by staying outside of its event horizon you could travel years into the future relative to an observer beyond its gravitational field, while for you just a few days would have elapsed.

Neutron Stars

Neutron stars spin very quickly. The fastest one found in our galaxy rotates at 716 times per second, which is approaching 25% of the speed of light. If a spinning neutron star were to collapse to a black hole the centrifugal effect might very well cause it to form a ring of protons that do not collapse to a singularity.

This “spinning doughnut” might not stretch you out into an infinitely long piece of spaghetti, but rather cause a rupture in the space-time continuum at the nexus of that doughnut. The other end might spontaneously form at another weak point elsewhere in the galaxy. There are a number of readily apparent possibilities – you are ripped to shreds; you get stuck forever; you end up outside our galaxy; you exit in the future; or you exit in the past. Another possibility is that you exit in a parallel universe. If it so happens to be one where our laws of physics don’t apply, then you would simply cease to exist as your atoms will no longer obey the laws of your own universe.

Superstrings

If superstrings exist, one with the diameter of a proton and 1.6 km long would weigh as much as the entire planet Earth. If you can arrange to have two of these side by side and start orbiting the two strings in a figure-eight pattern, through some very esoteric and complex mathematical operations this would allow you to travel forward or backward in time, to transmit matter from point to point, or travel to any point that you could calculate.

The funny thing is that the strings would have minimal gravity despite their mass as long as they were straight. If they were formed into loops, however, they would possess the full gravity of our planet. No matter how intimidating the mathematics, there’s still no evidence that superstrings exist, though. They still remain a theoretical construct to explain some phenomena that we don’t completely understand yet.

Different Dimensions

We can add a whole new dimension to the discussion; seven of them in fact! Quantum theory currently requires 10 dimensions, or 11 if you include time, in order to describe itself. But where are they? You can see lengths, you can see widths, you can see heights; they are perfectly obvious. The fourth dimension is duration or time. So where are the seven other dimensions? Picture these dimensions as flower petals that haven’t unfurled. They’re tightly held at the corners of all the other dimensions. If there was another direction you could travel other than up, down, left, right, forward, or back, it would be quantified by one of these dimensions.

Robert A. Heinlein, both a scientist and a science fiction writer, wrote a book titled Number of the Beast. In his novel, one of the protagonists created a device where he could swap one dimension for another. People in the book would continue to perceive three dimensions, but if you traveled along this new dimension that might have taken the place of “length” you could travel into the future, or into the past. Other dimensional swaps would allow you to transit to parallel universes, while another would allow you to transit to a different physical location in the blink of an eye.

Maybe he was on to something. Maybe it is as simple as swapping one dimension for another. We’re basically three-dimensional creatures . We can handle length, width, and depth. Maybe by rotating out one dimension and rotating in another we can accomplish anything. The secret is to let quantum physicists figure out how to make it actually work. It might only require knowledge and a very tiny expenditure of energy. You could step into a “booth” in your home, twist a knob, and step out of the booth, halfway around the world, in a fancy restaurant, or in a lunar base on the far side of the Moon, ready for a night’s observation. Think it unlikely? At this point, it makes sense to refer to one more of Arthur C. Clarke’s laws.

Clarke’s Third Law : Any sufficiently advanced technology is indistinguishable from magic.

Related Posts

© Copyright 2023 Astronomy Trek

Engineering Made Easy

Get High Quality Content on Science, Technology and Engineering Topics along with VIDEO Content in HD.

16 Mar 2020

What is time and how to time travel | 5 ways to time travel | is time travel possible, 5 real ways to travel through time, what is time , definition of time, 5 ways to time travel video, time the fourth dimension, is time travel possible  , following 5 ways of time travel are discussed here -, 1- moving at very high speed, 2- moving around a very massive object, 3- entering into wormholes, 4- suspended animation, 5- using rotating cylinder of light, go to home page, no comments:, post a comment.

'Family Guy' Season 22 Is Cancelling Christianity in Epic Time Travel Finale

Brian is using Stewie's time machine for nefarious purposes again.

The Big Picture

  • Jesus returns in an epic time-travel finale for Family Guy Season 22.
  • Brian falls for a religious woman and tries to go back in time to cancel Christianity so she'll sleep with him.
  • The Family Guy finale promises the show's trademark offensive humor and some unexpected twists.

Our dear lord and savior returns to Family Guy in the Season 22 finale. At this point, Jesus has made so many appearances that he might just move in with The Griffins . It's been a while since he's appeared to clarify some things or respond when he's called upon, but tonight he returns in an epic time-travel episode. In an interview with TV Insider , showrunners Richard Appel and Alec Sulkin previewed the season finale, which airs tonight on Fox, and what Jesus has to do with it all.

This time around, he doesn't appear to the characters, and like when he was crucified all those millennia ago, he is seemingly innocent. His only crime is being associated with a religion that puts a damper on Brian's (voiced by Seth MacFarlane ) plans. In the "Faith No More" episode, the official episode synopsis (below) teases another one of Stewie (voiced by MacFarlane) and Brian's classic adventures.

"Brian becomes romantically interested in someone and it inspires him to use Stewie's time machine. Strange consequences result from their journey"

Brian Falls In Love With A Religious Woman

The dog is in love again. He falls in love with a devout vet technician (voiced by Mae Whitman ) and pretends to be religious himself to score with her. However, things don't play out in a neat rom-com manner, something Sulkin calls a mislead. "You go a little bit down a road with something that seems like it could be a Family Guy story, and then it turns into something else," he said.

What does a dog have to do to get frisky when his girlfriend has decided she's not having sex until marriage because she doesn't want to go to hell? For Brian, however, the answer is obvious. The dog will use Stewie's time travel tech . The goal? To cancel Christianity. How? By stopping Jesus before religion was invented and evolved to ruin his chances in the present. Stewie is not one to be left behind during a time-travel adventure, so the duo will jump back in time together.

They find themselves in medieval Israel circa A.D. 30, and they've already messed up. What can go wrong in a place and time they don't understand? And all this just so the dog can get lucky? The last time Jesus was on the show was in Episode 10 of Season 19, as Peter faced off with his mortal enemy: The Giant Chicken. It seems that we should be ready for another round of humor that will most definitely be deemed offensive , with Appel saying, “I never thought I’d hear myself say this as a writer, but the Standards and Practices department at Fox is easy to work with and pretty good with us.”

Catch the Family Guy Season 22 finale tonight on Fox. Stream past episodes on Hulu.

WATCH ON HULU

Money latest: Morrisons shoppers are going to notice two changes in stores

Morrisons has launched two major changes for shoppers – with stores offering travel money and trolleys now featuring advertisements. Read this and all the latest consumer and personal finance news below - and leave your thoughts in the box.

Thursday 25 April 2024 19:51, UK

  • Halifax hikes mortgage rates - as entire market moves upwards
  • Renters' Reform Bill signed off - but with indefinite delay to no-fault evictions ban
  • Morrisons rolls out bureau de change and trolley adverts

Essential reads

  • The world of dark tourism - what is it, is it ethical, and where can you go?
  • Money Problem : I have a mortgage offer - will it change now rates are rising?
  • Savings Guide : Why locking into fixed-rate bond could be wise move
  • 'More important than a will': What are lasting power of attorneys and how much do they cost?
  • Cheap Eats : Michelin chef's secret lasagne tip - and expensive ingredient you shouldn't use

Ask a question or make a comment

Halifax has become the latest major lender to up mortgage rates.

They are putting up a range of deals by 0.2%.

BM Solutions also announced increases today.

It follows similar moves by TSB, NatWest, Virgin, Barclays, Accord, Leeds Building Society, HSBC and Coventry last week.

Lenders are responding to swap rates - which dictate how much it costs to lend money - rising on the back of higher than expected US inflation data, and concerns this could delay interest rate cuts there. 

US trends often materialise elsewhere - though many economists are still expecting a base rate cut from 5.25% to 5% in the UK in June.

This is what average mortgage rates look like as of today...

Justin Moy, managing director of EHF Mortgages, told Newspage: "Yet more bad news for mortgage borrowers, as two of the biggest lenders announce increases to their fixed-rate products. 

"As mortgage rates creep up and past 5% even for those with the largest deposits, we seem to be lacking a clear strategy of the government or the Bank of England on how rates will eventually fall. 

"Even 2% inflation may not be enough to reverse the recent trends in rates."

Morrisons has launched two major changes for shoppers – with stores now offering travel money and trolleys featuring advertisements.

Announcing their bureau de change service, Morrisons said customers could exchange currencies in select stores or could place their money orders online at Morrisonstravelmoney.com.

Using the online service means customers can either click and collect their cash in certain Morrisons stores or at any of Eurochange's 240 branches. Alternatively, they can go for home delivery.

Services director at Morrisons, Jamie Winter, said the service "will provide our customers with easy access to a wide range of currencies at competitive exchange rates".

So far, stores in the following areas have travel money kiosks:

  • Basingstoke

In other news, the supermarket chain rolled out a new trolley advertising across 300 stores in a partnership with Retail Media Group.

A sweetener used in drinks, sauces, savoury and sweet foods and chewing gum can cause serious damage to people's health, according to a new study.

Neotame, a "relatively new" sweetener, could damage the intestine by causing damage to healthy bacteria in the gut, according to the study, leading it to become diseased and attack the gut wall.

The study by Anglia Ruskin University (ARU), published in the journal Frontiers in Nutrition, found the negative effect of neotame "has the potential to influence a range of gut functions resulting in poor gut health", potentially impacting metabolic and inflammatory diseases, neuropathic pain, and neurological conditions.

The illnesses this could lead to include irritable bowel disease or insulin resistance.

Read the full story here ...

As we reported yesterday, a pilot programme is coming into force in Venice today that means visitors have to pay a €5 (£4.28) charge to enter the city.

Authorities say the pilot programme is designed to discourage tourists and thin the crowds that throng the canals during peak holiday season, making the city more liveable for residents.

Pictures have been emerging this morning of people queueing to register for a QR code that will allow them to enter after they have paid the charge - and officials carrying out checks on people inside the city.

People found to be contravening the rules can be fined up to €300 (£257).

As detailed in our story , the move has been met with anger among some in the city.

Venice is the first city in the world to introduce a payment system for tourists - but comments from its most senior tourist official suggested it may become a more common practice for major tourist hotspots in Europe.

Simone Venturini revealed the pilot programme was being closely watched by other places suffering from mass tourism - including other Italian art cities and hugely popular weekend-break destinations Barcelona and Amsterdam.

More than 160,000 people switched to Nationwide from other providers at the end of 2023, when the building society was offering a huge cash switching incentive.

According to figures from the Current Account Switch Service (CASS), Nationwide had a net gain of 163,363 account switchers between October and December, after leavers were taken into account.

It was the highest quarterly gain since the same period in 2022, when 111,941 switched to Nationwide.

The building society launched a £200 switching bonus for new joiners in September last year - the biggest giveaway on offer at the time. It withdrew the offer just before Christmas.

The latest CASS figures, which show Nationwide had 196,260 total gains before accounting for leavers, suggesting it could have spent up to £39m on nabbing customers from other providers in the last three months of the year.

Barclays and Lloyds Bank saw more modest net gains of 12,823 and 5,800 respectively, while the rest of the UK's big banks reported net losses.

NatWest and Halifax fared worst, losing over 40,000 more switchers each than they gained.

This week saw the last remaining switching offer on the market withdrawn.

Sainsbury's is having technical issues again - with shoppers taking to social media to say their deliveries have been delayed or cancelled.

The supermarket has been replying to customers saying: "I'm really sorry about the tech issues this morning. 

"We're aware of the situation and are working to sort it as quickly as possible. In the meantime, we'd advise you place a new order for a future date."

Customer Andrew Savage wrote: "Order has not been delivered and no confirmation email this morning."

Another, John B Sheffield, said: "So angry! Just got through to your customer line after 40 min WAIT. 

"Tells me NO DELIVERIES TODAY! tech problem? I've NO FOOD IN! ANGRY!"

In a statement to Sky News, a Sainsbury's spokesperson says: "A small technical issue affected some groceries online orders this morning. 

"We have contacted these customers directly to apologise for the inconvenience." 

In another update at 10am, the supermarket said that the issue has been resolved. 

Responding to customers on X, Sainsbury's also offered those affected e-vouchers and details on how to rebook their orders.

It comes a month after the supermarket had to cancel almost all deliveries on a Saturday in mid-March due to another technical issue.

By Daniel Binns, business reporter

A potential $38.8bn (£31bn) takeover of UK-based mining company  Anglo American  has sent its shares soaring - and helped the FTSE 100 hit yet another record high this morning.

The attempted mega-merger, by larger Australian rival BHP, is currently being reviewed by Anglo American's board.

The deal, if it goes through, would create the world's biggest copper mining company - and comes as the price of the metal continues to climb amid soaring demand.

Anglo American's shares have surged as high as 13% this morning as news of the negotiations emerged.

The announcement also helped spur the FTSE 100 to a new intraday (during the day) high of 8,098 points.

The index, of the London Stock Exchange's 100 most valuable companies, has hit a string of records this week, including  an all-time closing high of 8,044 points  on Tuesday.

The score is based on a calculation of the total value of the shares on the index.

Also moving the markets are a string of company results which were published earlier on Thursday.

Among those issuing updates to investors was drugsmaker AstraZeneca. Its stock is up more than 5% after the firm reported quarterly profit and revenue above market estimates.

Unilever is also up 5% following similar better-than-expected quarterly figures.

Another good performer is  Barclays  - despite reporting a 12% fall in profits for the first three months of 2024. Its shares are up more than 4%.

That's because its quarterly figures are slightly better than expected, and the bank has said it expects its fortunes to improve later this year.

Meanwhile, as tensions in the Middle East continue, the price of a barrel of Brent crude oil continues to hover at a price of around $88 (£70).

This morning £1 buys $1.25 US or €1.16, similar to yesterday.

Every week we get experts to answer your Money Problems - usually on a Monday, but today we have a short, bonus addition in light of multiple lenders raising mortgage rates this week on fears an interest rate cut could be delayed to a little later this year (note: many economists still think it will come in summer).

A few readers have got in touch with questions similar to this one...

My remortgage is due to complete on 1 May. I already have an offer but with rates going up, is there any way at all my offer rate could increase? Saz681

We asked David Hollingworth, director at L&C Mortgages, to answer this one...

It's great news that you are already set up with a mortgage offer, Saz - ready to make a smooth switch to a new deal and/or lender, once the current one ends.  

It does take time to set up a new mortgage so shopping around the market a good few months ahead will help you put everything in place and avoid slipping onto a high variable rate.

Fixed rates have been nudging up slightly but you have already got a formal offer in place so shouldn't worry.  

Applying for a mortgage will generally secure that rate and the lender will then carry out any further checks to issue the mortgage offer.  

The offer will be valid for a specified period, often for up to six months. Rates are always shifting for new customers but you can rest easy that your rate should be safe and sound for your switch in May.

This feature is not intended as financial advice - the aim is to give an overview of the things you should think about. Submit your dilemma or consumer dispute, leaving your name and where in the country you are, by emailing [email protected] with the subject line "Money blog". Alternatively, WhatsApp us  here .

By Ollie Cooper , Money team

Interest in a phenomenon known as "dark tourism" has been steadily rising in recent years - but what is it?

To find out, we've spoken with tourism academic  Dr Hayley Stainton  and renowned dark tourist and author Dr Peter Hohenhaus, who runs a  dark tourism website .

What is it?

In general, dark tourism involves travelling to sites connected to death or disaster.

"Dark tourism has been around for as long as we have been travelling to places associated with death," Dr Stainton says. 

However, the term wasn't officially coined until 1996 by John Lennon, a professor of tourism at Glasgow Caledonian University, in Scotland.

"Not everyone is familiar with the term," says Dr Stainton, "[but] many people have been a dark tourist at some time or another, whether intentional or not."

Some examples of the most famous sites

  • Auschwitz concentration camp, Poland
  • 9/11 Memorial and Museum in New York, US
  • Chernobyl, Ukraine 
  • Hiroshima and Nagasaki, Japan
  • Choeung Ek "killing fields" and the Tuol Sleng genocide museum at the former S-21 prison in Phnom Penh, Cambodia 

Areas with a degree of infamy, like Alcatraz, are extremely popular spots that also fall under the "dark tourism" umbrella. 

How popular is it?

Dr Hohenhaus and Dr Stainton say they have noticed a rise in its popularity. 

"Tourists are looking for more unique and unusual experiences," Dr Stainton says. 

"This has seen a move away from the more traditional 'sun, sea and sand' type holidays to a variety of different tourism forms, which includes dark tourism."

Dr Hohenhaus adds: "Maybe people want to connect to more recent and hence more personally relevant history - that is definitely the case with myself."

He goes on: "I think I've learned more about the world through dark tourism than through all of my formal education or my previous academic career."

Is it ethical?

This is the big question associated with dark tourism. 

Dr Stainton says that while problems do arise, the stigma around the practice is often misguided. 

"People don't visit sites like the killing fields in Cambodia or the site of Chernobyl for 'fun' - they visit for the educational experience, as dark tourism is often also a form of educational tourism," she says.

Problems arise when tourists are not respectful to those who may have been impacted.

"For instance, taking inappropriate photos or laughing and joking when others may be in a state of mourning."

Notorious examples include people taking selfies outside Grenfell Tower and at Auschwitz. 

"It is therefore imperative that dark tourists are considerate of those around them and respectful at all times," Dr Stainton says.

"As long as you are not just after a cheap sensationalist thrill - take dark tourism seriously and do it right, and it can be an immensely enriching thing to engage in."  Dr Hohenhaus

Where could you go? 

These are Dr Hohenhaus' recommendations:

  • Ijen crater in Indonesia - where at night you can see the fabled blue flames of the sulphur mines next to the volcano crater lake;
  • The Polygon, the former Semipalatinsk nuclear weapons test site of the USSR, now in Kazakhstan;
  • The Goli Otok former prison island off the coast of Croatia;
  • The Murambi memorial to the Rwandan genocide - which Dr Hohenhaus says is "certainly the very darkest place I have ever been";
  • Majdanek concentration camp memorial near Lublin, eastern Poland.

What do you think of dark tourism? Is it misunderstood, educational or abhorrent?  Let us know in the comments section...

John Lewis will be sharing its job interview questions online in an attempt to find the "best talent".

The retail chain hopes that allowing candidates to view questions before an interview will allow prospective employees to "really demonstrate what they can do" and prepare, the Financial Times reports.

John Lewis talent acquisition lead Lorna Bullett told Sky News that interviews can feel daunting and "nerves can seriously impact performance".

She added the company want "the right people" from a variety of backgrounds and with "the best talent" to join.

"It makes absolute business sense to find ways of helping candidates to really demonstrate what they can do," she said.

Ms Bullett added that the process will be "no less rigorous".

Be the first to get Breaking News

Install the Sky News app for free

is time travel easy

Cheapism

21 Ways to Travel Smarter (and Cheaper) in 2024

Posted: April 22, 2024 | Last updated: April 22, 2024

<p>When it comes to travel, New Year's resolutions often take the form of general vows to travel more or pledges to finally take that trip to (fill in the blank). This year, when you travel,  strive for the goal of reducing the expense and stress of travel and getting more out of your trips, whether your plans include an exotic vacation or a getaway closer to home. Here are some goals for traveling smarter and more cheaply.  </p><p><b>Editor's note: This story was updated in April 2024</b></p>

Travel Resolutions

When it comes to travel, New Year's resolutions often take the form of general vows to travel more or pledges to finally take that trip to (fill in the blank). This year, when you travel,  strive for the goal of reducing the expense and stress of travel and getting more out of your trips, whether your plans include an exotic vacation or a getaway closer to home. Here are some goals for traveling smarter and more cheaply.  

Editor's note: This story was updated in April 2024

<p>Air travel comes with high costs, both monetary and environmental, not to mention high stress. Instead, consider <a href="https://blog.cheapism.com/under-the-radar-road-trips/">hopping in the car for your next trip</a>, whether it's a getaway to a bed and breakfast or a <a href="https://blog.cheapism.com/best-national-parks-to-visit-14142/">weekend visit to a national park</a>. The average price for a gallon of gas hit $3.06 in mid-December, <a href="https://gasprices.aaa.com">according to AAA</a>.</p>

Travel by Car

Air travel comes with high costs, both monetary and environmental, not to mention high stress. Instead, consider hopping in the car for your next trip , whether it's a getaway to a bed and breakfast or a weekend visit to a national park . The average price for a gallon of gas hit $3.06 in mid-December 2024, according to AAA .

<p>If you don't have to travel on a certain day at a certain time — or even to a certain place — you may reap the reward of lower prices. Airfare search engines such as Kayak and Google Flights allow flexible date searches. Sites such as Travelzoo and Airfarewatchdog are good sources for last-minute travel deals. Sign up for alerts and be prepared to pounce. </p><p><b>For more great travel guides and vacation tips, <a href="https://cheapism.us14.list-manage.com/subscribe?u=de966e79b38e1d833d5781074&id=c14db36dd0">please sign up for our free newsletters</a>.</b></p>

Be Flexible

If you don't have to travel on a certain day at a certain time — or even to a certain place — you may reap the reward of lower prices. Airfare search engines such as Kayak and Google Flights allow flexible date searches. Sites such as Travelzoo and Airfarewatchdog are good sources for last-minute travel deals. Sign up for alerts and be prepared to pounce. 

For more great travel guides and vacation tips,  please sign up for our free newsletters .

is time travel easy

Learn the Language

These days, online courses and apps can help travelers learn a language for free. Commit at least a few phrases to memory before traveling abroad to engender goodwill among locals and help you get more out of the trip. More capable linguists have an advantage when haggling.

<p>As soon as you know where you're going, book a hotel                 — as the arrival date approaches, rates are likely to go up. Reservations usually (but not always) can be canceled within 24 or 48 hours of the arrival date without penalty, so there's no harm in booking early and continuing to search for a better deal.</p>

Don't Procrastinate on Accommodations

As soon as you know where you're going, book a hotel — as the arrival date approaches, rates are likely to go up. Reservations usually (but not always) can be canceled within 24 or 48 hours of the arrival date without penalty, so there's no harm in booking early and continuing to search for a better deal.

<p>Many hotels, primarily upscale properties, offer guests <a href="https://blog.cheapism.com/secret-hotel-perks-17133/">fun and free perks</a> such as free bike rentals, snacks, and fitness classes. Many of these aren't listed among the usual amenities, but all you have to do is ask. </p>

Take Advantage of Hidden Hotel Freebies

Many hotels, primarily upscale properties, offer guests fun and free perks such as free bike rentals, snacks, and fitness classes. Many of these aren't listed among the usual amenities, but all you have to do is ask.

<p>Avoid airline baggage fees by packing only carry-on luggage. <a href="https://blog.cheapism.com/carry-on-packing-tips-3705/">Tips include</a> wearing bulky clothing on the plane and bringing as large a "personal item" as the airline will allow. If you're brave enough to stand out in the security line, try a <a href="https://www.amazon.com/dp/B01E4KAT48/ref=as_li_ss_tl?ie=UTF8&linkCode=ll1&tag=msnshop-20&linkId=1791d58b743210b8b2df437c26561ba8&language=en_US">travel jacket</a> that lets you stash extra items on your person instead of taking up room in your carry-on or personal item.</p>

Stop Checking Luggage

Avoid airline baggage fees by packing only carry-on luggage. Tips include wearing bulky clothing on the plane and bringing as large a "personal item" as the airline will allow. If you're brave enough to stand out in the security line, try a travel jacket that lets you stash extra items on your person instead of taking up room in your carry-on or personal item.

<p>A hotel can supply toiletries such as a toothbrush, but travelers staying with friends or renting an Airbnb may be out of luck. Other easy-to-forget necessities such as a phone charger are much more expensive to replace than deodorant. Frequent flyers can stay organized by stocking a case of <a href="https://blog.cheapism.com/carry-on-essentials/">travel essentials</a> that's always ready to go.</p>

Don't Forget the Necessities

A hotel can supply toiletries such as a toothbrush, but travelers staying with friends or renting an Airbnb may be out of luck. Other easy-to-forget necessities such as a phone charger are much more expensive to replace than deodorant. Frequent flyers can stay organized by stocking a case of travel essentials that's always ready to go.

<p>Don't wait until the last minute to figure out where to park before a big trip that begins at an airport, train station, or port. Look into all the options for long-term parking well in advance to avoid paying high fees.</p>

Pre-Plan Parking

Don't wait until the last minute to figure out where to park before a big trip that begins at an airport, train station, or port. Look into all the options for long-term parking well in advance to avoid paying high fees.

<p>Frequent flyer programs aren't just for frequent flyers. It's free to sign up when you book a flight; miles and points on many airlines don't expire; and travelers can add to their totals steadily in many ways besides flying. Start working toward an upgrade or free flight on every airline you fly.</p>

Sign up for Airline Rewards Programs

Frequent flyer programs aren't just for frequent flyers. It's free to sign up when you book a flight; miles and points on many airlines don't expire; and travelers can add to their totals steadily in many ways besides flying. Start working toward an upgrade or free flight on every airline you fly.

<p>Some credit cards give sign-up bonuses in the form of miles to new cardholders who spend a certain amount within the first few months. Many U.S.-based airlines offer these types of cards, and many general rewards cards <a href="https://blog.cheapism.com/travel-rewards-hacks/">have incentives for travelers</a>.</p>

Get a Credit Card That Awards Miles

Some credit cards give sign-up bonuses in the form of miles to new cardholders who spend a certain amount within the first few months. Many U.S.-based airlines offer these types of cards, and many general rewards cards have incentives for travelers.

<p>Don't wait until an hour before a car goes on the block to start researching. Ideally, Barrett-Jackson suggests you'll have done all your research well before the date of the auction and will walk in with a clear plan of action.</p>

Use Up Vacation Days

Busy professionals are liable to leave vacation days on the table at the end of the year instead of devoting them to a memorable trip. Paid time off is a valuable part of employee compensation — don't let it go to waste.

<p>It's easy to forget about attractions close to home. Instead of burdening your budget with long-haul travel, seek out <a href="https://blog.cheapism.com/usa-tourist-attractions-3616/">must-see destinations in your own state</a>.</p>

Be a Tourist in Your Own Backyard

It's easy to forget about attractions close to home. Instead of burdening your budget with long-haul travel, seek out must-see destinations in your own state .

<p><a href="https://blog.cheapism.com/dont-miss-these-13-perks-costco-or-sams-club-membership-4269/">Being a member at Costco or Sam's Club</a> comes with travel benefits. Before booking through conventional channels, ask about deals available through warehouse clubs, such as paying no fee for adding a driver onto a rental car contract.</p>

Take Advantage of a Warehouse Club Membership

Being a member at Costco or Sam's Club comes with travel benefits. Before booking through conventional channels, ask about deals available through warehouse clubs, such as paying no fee for adding a driver onto a rental car contract.

<p>Although it can be stressful, there are lots of ways to make <a href="https://blog.cheapism.com/traveling-with-grandchildren/">traveling with kids</a> a little easier. Try to plan the journey during nap or bedtime, so they will be asleep for at least part of the trip. And don't ever, ever forget a pacifier (or whatever your family calls it).</p>

Don't Stress About Travel With Kids

Although it can be stressful, there are lots of ways to make traveling with kids a little easier. Try to plan the journey during nap or bedtime, so they will be asleep for at least part of the trip. And don't ever, ever forget a pacifier (or whatever your family calls it).

<p>Speaking of kids, never underestimate the benefit of packing extra diapers, baby wipes, hand sanitizer, and clean clothes in a carry-on. Stash a few plastic baggies for soiled clothes and garbage. Family medications also belong in the carry-on, not in checked luggage.</p>

Be Prepared for Contingencies

Speaking of kids, never underestimate the benefit of packing extra diapers, baby wipes, hand sanitizer, and clean clothes in a carry-on. Stash a few plastic baggies for soiled clothes and garbage. Family medications also belong in the carry-on, not in checked luggage.

<p>Did you know that booking with an airline representative over the phone can cost up to $25? <a href="https://reviews.cheapism.com/us-domestic-airline-fees/">Airlines generally charge a fee</a> for assistance, so reserve talk time for help questions only. Budget airlines such as Frontier and Spirit charge lower baggage fees for passengers who pay during online booking.</p>

Always Book Flights Online

Did you know that booking with an airline representative over the phone can cost up to $25? Airlines generally charge a fee for assistance, so reserve talk time for help questions only. Budget airlines such as Frontier and Spirit charge lower baggage fees for passengers who pay during online booking.

<p>Even if you're a fan of tried-and-true hotels, sites such as <a href="https://blog.cheapism.com/amazing-airbnbs/">Airbnb and VRBO</a> are worth a shot. You may find unexpected deals that are cheaper and more comfortable than the basic hotel room. Self-catering also saves money.</p>

Be Open to Vacation Rentals

Even if you're a fan of tried-and-true hotels, sites such as Airbnb and VRBO are worth a shot. You may find unexpected deals that are cheaper and more comfortable than the basic hotel room. Self-catering also saves money.

<p>Travelers often <a href="https://blog.cheapism.com/annoying-hidden-fees/">get hit with hidden fees</a> of a few dollars each time they withdraw cash from a foreign ATM and up to 3% for paying with a credit card abroad. Switch to a bank with no ATM fees and a credit card with no foreign transaction fees.</p>

Stop Paying Fees

Travelers often get hit with hidden fees of a few dollars each time they withdraw cash from a foreign ATM and up to 3% for paying with a credit card abroad. Switch to a bank with no ATM fees and a credit card with no foreign transaction fees.

<p>If work takes you to a desirable destination, take advantage of the free flight and spend some time as a tourist. Even if you can't afford to stay any extra days, try to carve out a few hours for sightseeing.</p>

Get More out of Business Trips

If work takes you to a desirable destination, take advantage of the free flight and spend some time as a tourist. Even if you can't afford to stay any extra days, try to carve out a few hours for sightseeing.

<p>We've all been there — it's the night before an early flight, and you fill a suitcase without much thought. Then you realize you packed five pairs of jeans but not one outfit for an evening out, and you have to spend money and time shopping for something appropriate. Resolve to set everything out in advance and strategically choose clothing you can mix and match.</p>

Pack Ahead of Time and Plan Outfits

We've all been there — it's the night before an early flight, and you fill a suitcase without much thought. Then you realize you packed five pairs of jeans but not one outfit for an evening out, and you have to spend money and time shopping for something appropriate. Resolve to set everything out in advance and strategically choose clothing you can mix and match.

<p>Even if it's just a smartphone camera, seek out tips and tutorials to help you take better photos and videos. Images of a trip are perhaps the cheapest souvenirs — and, for many people, the most valuable.</p><div class="rich-text"><p>This article was originally published on <a href="https://blog.cheapism.com/travel-resolutions/">Cheapism</a></p></div>

Learn to Use a Camera

Even if it's just a smartphone camera, seek out tips and tutorials to help you take better photos and videos. Images of a trip are perhaps the cheapest souvenirs — and, for many people, the most valuable.

This article was originally published on Cheapism

More From Cheapism

  • 13 Cheap Pets That Are Easy to Take Care Of
  • 40 Meals Under 100 Calories Per Serving
  • Costco Business Center: Locations, FAQs, and Why You Should Shop Here
  • Is Spirit Airlines Safe, and Why Is It So Cheap?
  • These Are the 7 Cheapest Fast-Food Joints To Try Right Now

Like Cheapism's content? Be sure to follow us .

More for You

Kevin Porter Jr. Is Currently Playing In Greece For $10K Just One Year After Losing Majority Of $82.5 Million Contract

Kevin Porter Jr. Is Currently Playing In Greece For $10K Just One Year After Losing Majority Of $82.5 Million Contract

Snacks and other food items banned in the US

30 food items that you might not know are banned in America

If you use any of these 4 phrases you have higher emotional intelligence than most

If you use any of these 4 phrases you have higher emotional intelligence than most

I got my dream job at Apple on my fourth attempt. Here's why I left the 6-figure job after only 2 years.

I got my dream job at Apple on my fourth attempt. Here's why I left the 6-figure job after only 2 years.

Carry Cash

I’m a Bank Teller: 3 Times You Should Never Ask For $100 Bills at the Bank

Ghosts of the USA: The Most Haunted Places in America

Ghosts of the USA: The Most Haunted Places in America

Kid shows off impressive dance moves after having ‘too much’ soda

Kid shows off impressive dance moves after having ‘too much’ soda

Want the Max $4,873 Social Security Benefit? Here's the Salary You Need.

Want the Max $4,873 Social Security Benefit? Here's the Salary You Need.

14 Things You Should Never Divulge to Anyone Else About Yourself

14 Things You Should Never Divulge to Anyone Else About Yourself

A woman thought her tattoos were why she was rejected for a job, but experts say personality is far more important

A woman said her tattoos got her rejected for a job, but experts say personality is far more important

Crumbl Is Finally Selling Smaller Cookies

Crumbl Is Finally Selling Smaller Cookies After Hearing Our Pleas

Ramsey cuts through housing 'conspiracy' theory

'You guys need to get off the internet': Dave Ramsey cuts through Colorado man's 'conspiracy' theory about a housing market crash. Here are the facts

The Only Way You Should Store Peanut Butter, According to SKIPPY

The Only Way You Should Store Peanut Butter, According to SKIPPY

These 10 Mountain Towns Are as Affordable as They Are Beautiful

These 10 Mountain Towns Are as Affordable as They Are Beautiful

New York Times publisher A.G. Sulzberger reportedly questioned VP Harris about why President Biden hasn't sat down for an interview with the paper.

Kamala Harris was annoyed after NY Times publisher confronted her over Biden not doing interviews: Report

Louise Boyce

At 43, I’ve finally learned how to love my size 16 curves

People Who Don’t Show Empathy Usually Have These 18 Traits

People Who Don’t Show Empathy Usually Have These 18 Traits

Taco Bell are bringing back a fan-favorite to the menu

Taco Bell brings back beloved menu item for limited time only

0Peanuts by Charles Schulz

0Peanuts by Charles Schulz

95 hours on Canada’s BEST train! (Vancouver to Toronto on Via Rail)

95 hours on Canada’s BEST train! (Vancouver to Toronto on Via Rail)

All the travel perks you need. In one place.

En Us Ppc Generic

How it works

Book

Expense Management

Take the stress off of your budgets..

  • Policies and automated approvals can easily be set up to enable travelers to spend within established budget guardrails.
  • To simplify managing your travelers, you get access to real-time visibility into all current and projected travel costs across your organization.
  • With one easy click, you can integrate with best-in-class expense and reporting tools.

Book. Change. Cancel. Anytime. Anywhere.

  • Our FlexiPerk feature allows 100% of all business trips booked on our platform to be refunded. On average, you save 40% more compared to other flexible fares in the market.
  • You can change or cancel any trips, no questions asked, and get a minimum of 80% back to use on our platform.
  • Allowing you to book worry-free, knowing you won’t lose money.

Us Flexiperk Cancel

Trusted by +5,000 Companies

Usarugby

Loyalty Programs

Earning loyalty points. never easier..

  • Your travelers can now add all of their personal travel loyalty programs on our platform, so they can keep earning with every trip booked.
  • The loyalty programs are stored in their profiles and are automatically applied whenever they make a new booking.

Us Loyalty Program

Make a difference. One trip at a time.

  • You can create net-zero travel strategies for your company through GreenPerk.
  • A percentage of bookings are collected and then automatically invested in Verra-certified projects to 100% offset the estimated trip CO2.
  • We take zero-commission, ensuring allocations directly support sustainability initiatives.

Marketplace

Plug and play. your favorite tools..

  • Our travel platform seamlessly integrates with top business software in just one click.
  • This enables streamlined data sharing for both travel booking details like itineraries or vendor invoices, as well as operational metrics such as real-time budget status.
  • Our open API framework also enables you to easily build custom integrations to match your existing systems with minimal effort.

Marketplace Integrations

Speak to a travel expert

Generic1 Ppc Demo

Want to explore by yourself?

How to island-hop around the Azores

Sandra Henriques

Apr 24, 2024 • 5 min read

is time travel easy

You'll need to hire a car (or organise a taxi for the day) to watch the sunset over Sete Cidades on São Miguel Island © Maya Karkalicheva / Getty Images

The Azoreans travel frequently between islands all year, so the archipelago has a reasonable network of inter-island flights and ferry routes, making it easy to navigate all nine islands. Weather is the only thing that might cause a sudden change of plans, but as locals put it, that's just a part of the Azorean experience.

On the islands of the Azores , buses are not the most reliable option, so renting a car or hiring a taxi is often the better alternative – except in Corvo where the island is so small you can walk everywhere.

Red car on the road with blue hydrangea flowers. Sao Miguel island in the Azores;

Explore the Azores on your own time by driving

Renting a car is the most practical way to travel around the Azores at your own pace – signs for major sights are clear, the traffic is often low and most of the main roads are well-maintained.

However, during peak season, especially in smaller islands with fewer resources, a scarcity of cars sees an increase in prices, and parking spaces can be hard to find near restaurants, top attractions, and beaches. 

Some rural roads are so narrow they appear to be one-lane when, in fact, they're two-way streets – unless a traffic sign states otherwise, always expect cars coming in the opposite direction. And it’s not a myth that most of the countryside traffic jams are caused by farmers leading herds of cows between grasslands. Get as close to the side of the road as possible, turn off your engine, and wait it out.

Want to explore the Azores without hiring a car? Find out how to do it .

Non-drivers can hire a taxi to visit must-see attractions

For non-drivers, or if you couldn’t rent a car due to peak season scarcity, hiring a taxi to cover the highlights is a practical way of getting around in the Azores. Taxis aren’t metered, so they’ll either charge a fixed fee based on the area or destinations you want to cover, or charge you by the hour (plan for around €20 per hour). 

Taxi drivers often speak English, although sometimes only well enough for basic communication. Those who are a little more fluent will be happy to answer your questions about the island and the sights to the best of their knowledge. Also expect no-strings-attached local tips on where to eat and must-sees, especially on the smaller islands. 

 Finding a cab that offers round-the-island tours or sightseeing trips is as easy as asking the person driving the taxi from the airport to the hotel – it's typically a service they offer, and if they don't, they'll know someone who does. 

Negotiation is usually between you and the driver, but prices generally don’t vary much between taxi companies. Prices are usually quoted as a fixed fees per trip, rather than per passenger, but always check before agreeing to a rate.

Azores Sao Miguel, Miradouro da Vista do Rei, Sete Cidades,, aerial drone view

Island-hop comfortably by flying

Government-owned SATA Air Açores is the only airline operating all inter-island flights and locals use it pretty much like a bus system, travelling between islands for shopping, doctor's appointments, and business trips. That said, not all routes are convenient, and for neighbouring islands, it's usually easier to take the ferry.

Keep in mind, especially when travelling with small children, that flying between islands is sometimes an exercise in patience. Some flights will make one or two stops before you reach your final destination, which means disembarking for every layover even if it’s no longer than 15 or 20 minutes – this is very common when flying from São Miguel to smaller islands in the Central and West groups.

Some planes are small, with limited space in the overhead compartment and under the front seat. Most passengers only discover which plane they're boarding at the gate or on the tarmac. If the flight is full, you can ask the crew if they can accommodate your luggage in the cargo hold.

GettyImages-1336636093-RFC.jpg

See more islands for the price of one by taking the ferry

One ferry ride between close islands can take up to 60 minutes – making it faster, cheaper, and more convenient than a flight. Islanders use it frequently, especially between Faial and Pico, to commute to work. Purchase tickets online, at the Atlântico Line website, or before your trip at the boat station.

The routes with the most frequent trips are the Blue Line, which connects Pico and Faial (a 30-minute ride) and the Green Line, which goes all the way to São Jorge (close to a one-hour ride). The Pink Line connects Flores and Corvo twice a day (40-minute trip), from two times a week in the winter to six days a week in the peak season.

From June to September, the ferry company increases the trips' frequency with three seasonal routes operating two to three days a week. The Orange Line connects Pico and São Jorge at least twice a day, travellers on the White Line can visit all five islands in the Central Group (twice a week), and the Purple Line connects Terceira to São Jorge, Pico, and Faial two times a week. 

A local’s tip for riding the ferry

Take it from a local with motion sickness, ferry trips between the “triangle islands” (Faial, Pico, and São Jorge) are a breeze in the summer and a little rougher in the winter but not impossible to make it with the help of preventive motion sickness medication. Ferries are big and stable, and the weather is usually good enough for passengers to sit outside on the top tier. Between Flores and Corvo, though, frequent choppy waters and a small boat can make trips a bit more uncomfortable. 

The Azores transportation FAQs and things to consider 

Is uber in the azores .

A few years ago, there was a short-lived attempt at implementing ride-share services on the larger island of São Miguel, but it never truly took off. For the time being, Uber is not available in the Azores.

Is the public transport in the Azores reliable?

Each island (except Corvo) has its own public bus system, but schedules and frequency are not the most reliable for travellers. Typically, there's one bus in the morning and another at the end of the day, mainly serving schools and workplaces. São Miguel is the island with the best options to travel by bus to top sites, but it takes some planning and flexibility.  

Accessible travel in the Azores

Unfortunately, regarding accessibility, the Azores have not quite hit the mark yet. For now, only Azores For All, a São Miguel-based private tour operator, has transportation options for travellers living with a disability.  

Explore related stories

Lonely-Plan-It-BLACK-1.jpg

Public Transport

Jul 12, 2023 • 11 min read

It’s hard but not impossible to explore this Atlantic archipelago without renting a car. Here’s your detailed guide.

is time travel easy

Feb 28, 2024 • 9 min read

is time travel easy

Jan 19, 2024 • 11 min read

Editorial-Templates-10.png

Jul 26, 2023 • 6 min read

is time travel easy

Jan 3, 2023 • 7 min read

Lisbon is situated on the northern banks of the Tagus River, the longest river on the Iberian Peninsula.

May 12, 2020 • 2 min read

Travel News - Portugal, Azores, Sao Miguel, Sete Cidades

May 22, 2018 • 2 min read

is time travel easy

Apr 20, 2024 • 5 min read

IMAGES

  1. What is Time and How to Time Travel

    is time travel easy

  2. Is Time Travel Possible ! All Possible way of Time Travel ! Mystery of

    is time travel easy

  3. Interesting-Facts-About Time-Travel. Is time travel really possible?

    is time travel easy

  4. Is Time Travel Really Possible

    is time travel easy

  5. Is Time Travel Possible?

    is time travel easy

  6. Time Travel: Explained in a nutshell

    is time travel easy

VIDEO

  1. ‼️ TIME TRAVEL ⌚ SEASON 2

  2. ‼️ TIME TRAVEL ⌚ SEASON 2

  3. Asphalt 9

  4. Is time travel possible?

  5. जहाज दुर्घटना 🛩🛩🛩✈️😭😭😭😭 #a2_sir #a2sir #a2motivation #saudiairlines #saudiarbaiflight #youtubeshorts

  6. layout: "Time Travel" (easy demon)

COMMENTS

  1. A beginner's guide to time travel

    A beginner's guide to time travel. Learn exactly how Einstein's theory of relativity works, and discover how there's nothing in science that says time travel is impossible. Everyone can travel in ...

  2. Is Time Travel Possible?

    In Summary: Yes, time travel is indeed a real thing. But it's not quite what you've probably seen in the movies. Under certain conditions, it is possible to experience time passing at a different rate than 1 second per second. And there are important reasons why we need to understand this real-world form of time travel.

  3. Is Time Travel Possible?

    Time traveling to the near future is easy: you're doing it right now at a rate of one second per second, and physicists say that rate can change. According to Einstein's special theory of ...

  4. Time travel

    Time travel is the hypothetical activity of traveling into the past or future. Time travel is a widely recognized concept in philosophy and fiction, ... special relativity and gravitational time dilation in general relativity, for example in the famous and easy-to-replicate observation of atmospheric muon decay. The theory of ...

  5. Will time travel ever be possible? Science behind curving space-time

    Is time travel possible? According to NASA, time travel is possible, just not in the way you might expect. Albert Einstein's theory of relativity says time and motion are relative to each other ...

  6. Can we time travel? A theoretical physicist provides some answers

    Time travel makes regular appearances in popular culture, with innumerable time travel storylines in movies, television and literature. But it is a surprisingly old idea: one can argue that the ...

  7. Physicist Discovers 'Paradox-Free' Time Travel Is Theoretically

    Tobar's work isn't easy for non-mathematicians to dig into, but it looks at the influence of deterministic processes ... The research smoothed out the problem with another hypothesis, that time travel is possible but that time travelers would be restricted in what they did, to stop them creating a paradox. In this model, time travelers have the ...

  8. Time Travel and Modern Physics

    Time travel has been a staple of science fiction. With the advent of general relativity it has been entertained by serious physicists. ... Easy Knowledge: A fan of classical music enhances their computer with a circuit that exploits a CTC. This machine efficiently solves problems at a higher level of computational complexity than conventional ...

  9. Time travel

    Science says time travel is possible. Here, we explore some of the theories behind time travel and the science that supports time-bending.

  10. Back to the Future: Is time travel possible?

    Time travel into the future is easy - in principle at least. Albert Einstein's theory of special relativity, which he devised in 1905, shows that 'moving clocks run slow'. This is an effect known as time dilation. Quite simply, if a clock moves at a constant speed with respect to a stationary observer, that observer would see the moving ...

  11. How To Time Travel, According To A Physicist

    Brian Greene, professor of physics and mathematics at Columbia University and co-founder of the World Science Festival, explains what we know about time trav...

  12. Time travel: five ways that we could do it

    Wormhole travel as envisioned by Les Bossinas for NASA. Credit: Wikimedia Commons 1. Time travel via speed. This is the easiest and most practical way to time travel into the far future - go ...

  13. About time: Is time travel possible?

    IT IS easy to dismiss time travel as nothing more than science fiction. After all, H. G. Wells wrote The Time Machine in the late 1800s, but still no one has built one that works. Don't give up ...

  14. Time travel is possible, but it's a one-way ticket

    Chenoa van den Boogaard, Physics and Astronomy editor The ability to travel through time, whether it is to fix a mistake in the past or gain insight into the future, has long been embraced by science fiction and debated by theoretical physicists. While the debate continues over whether travelling into the past is possible, physicists […]

  15. WATCH: 3 Simple Ways to Time Travel (Plus 3 Complicated Ones)

    This brings us to our third easy way to time travel: standing up. W hen you make the transition from sitting to standing, you're further from Earth, which means gravity's force is a tiny bit weaker for you, and you're travelling through time relative to your friend who's sitting down. Yep, more gravity means slower time travel, which is why ...

  16. Why Are We So Interested In Time Travel?

    Gleick: Yes. Because we're obsessed with time. Because time is what we care about, time rules our lives. Time creates possibilities for us and also terminates possibilities for us. Time is a harsh mistress. We struggle with it every day of our lives and more and more now than ever in the past. So it's natural for us to turn to these stories to ...

  17. A Simple Guide to Time Travel

    The ratio between 1 second and 86,400 seconds is (obviously) 86,400. Plugging this value for the Lorentz factor and rearranging the equation tells us that we'd need to travel at 99.9999999933% ...

  18. 10 Coolest Methods Of Time Travel

    Still, if traveling at 99% of the speed of light was possible you would experience 1 year on board your FTL craft for roughly every 7 back on Earth. At 99.999% of the speed of light, that figure would subsequently rise to 1 year for every 223 years back on Earth. Some have speculated that exceeding the speed of light might actually cause time ...

  19. Question: Has anybody here ever time traveled? Can we actually time

    Well, time travel to the future is easy, hell, you technically do it every day by just walking around. Theoretical time travel to the past however, gets real f***y real fast (Theoretical physics and all that). ... Time travel is not possible because you cannot travel to a destination that doesn't exist anymore or doesn't exist yet. If you can ...

  20. Why Time Travel To The Past Is More Difficult Than To The Future?

    In layman's terms, time travel is the concept of movement (often by a human) between certain points in time, analogous to the movement between different points in space, typically using a hypothetical device known as a time machine. It is believed that time travel into the past can be possible through wormholes, but theorists are faced by an ...

  21. Is time travel an overused trope? : r/scifiwriting

    Time Travel has always been seen as something that just moved you through time. Thats true, but thats the niche way that nobody really enjoys reading about anymore because its been so overused. Rather than just going with this Time Travel trope, its better to do unique things with it. Stuff that you have to find to make it more entertaining.

  22. Engineering Made Easy: What is Time and How to Time Travel

    5 REAL Ways to Travel through Time Here we will discuss, What actually the time is and is it really possible to travel through time? I will discuss here 5 different ways of time travel. So Read this post till the end as you may not be aware of all the five ways to travel through time. But first let's start with the scientific definition of time.

  23. 'Family Guy' Season 22 Is Cancelling Christianity in Epic Time Travel

    Brian is using Stewie's time machine for nefarious purposes again. Our dear lord and savior returns to Family Guy in the Season 22 finale. At this point, Jesus has made so many appearances that he ...

  24. Money latest: Morrisons shoppers are going to notice two changes in

    Morrisons has launched two major changes for shoppers - with stores offering travel money and trolleys now featuring advertisements. Read this and all the latest consumer and personal finance ...

  25. 21 Ways to Travel Smarter (and Cheaper) in 2024

    When it comes to travel, New Year's resolutions often take the form of general vows to travel more or pledges to finally take that trip to (fill in the blank). This year, when you travel, strive ...

  26. Corporate Travel Management & Business Travel Service

    Welcome to the only corporate travel platform you'll ever need. We pack booking, reporting, cancellations and support into an all-in-one solution. Now taking care of business travel is simple and easy. Leaving you to focus on your next destination.

  27. Know before you go: Manage your VA care while traveling

    Take the stress out of travel. My HealtheVet makes preparing for your time away easy with these five quick tips.

  28. How to island-hop around the Azores

    The Azoreans travel frequently between islands all year, so the archipelago has a reasonable network of inter-island flights and ferry routes, making it easy to navigate all nine islands. Weather is the only thing that might cause a sudden change of plans, but as locals put it, that's just a part of the Azorean experience.