NASA Logo

The most distant human-made object

Computer-generated view of a Voyager spacecraft far from the Sun.

No spacecraft has gone farther than NASA's Voyager 1. Launched in 1977 to fly by Jupiter and Saturn, Voyager 1 crossed into interstellar space in August 2012 and continues to collect data.

Mission Type

What is Voyager 1?

Voyager 1 has been exploring our solar system for more than 45 years. The probe is now in interstellar space, the region outside the heliopause, or the bubble of energetic particles and magnetic fields from the Sun.

  • Voyager 1 was the first spacecraft to cross the heliosphere, the boundary where the influences outside our solar system are stronger than those from our Sun.
  • Voyager 1 is the first human-made object to venture into interstellar space.
  • Voyager 1 discovered a thin ring around Jupiter and two new Jovian moons: Thebe and Metis.
  • At Saturn, Voyager 1 found five new moons and a new ring called the G-ring.

In Depth: Voyager 1

Voyager 1 was launched after Voyager 2, but because of a faster route, it exited the asteroid belt earlier than its twin, having overtaken Voyager 2 on Dec. 15, 1977.

Voyager 1 at Jupiter

Voyager 1 began its Jovian imaging mission in April 1978 at a range of 165 million miles (265 million km) from the planet. Images sent back by January the following year indicated that Jupiter’s atmosphere was more turbulent than during the Pioneer flybys in 1973–1974.

Beginning on January 30, Voyager 1 took a picture every 96 seconds for a span of 100 hours to generate a color timelapse movie to depict 10 rotations of Jupiter. On Feb. 10, 1979, the spacecraft crossed into the Jovian moon system and by early March, it had already discovered a thin (less than 30 kilometers thick) ring circling Jupiter.

Voyager 1’s closest encounter with Jupiter was at 12:05 UT on March 5, 1979 at a range of about 174,000 miles (280,000 km). It encountered several of Jupiter’s Moons, including Amalthea, Io, Europa, Ganymede, and Callisto, returning spectacular photos of their terrain, opening up completely new worlds for planetary scientists.

The most interesting find was on Io, where images showed a bizarre yellow, orange, and brown world with at least eight active volcanoes spewing material into space, making it one of the most (if not the most) geologically active planetary body in the solar system. The presence of active volcanoes suggested that the sulfur and oxygen in Jovian space may be a result of the volcanic plumes from Io which are rich in sulfur dioxide. The spacecraft also discovered two new moons, Thebe and Metis.

Voyager 1 at Saturn

Saturn

Following the Jupiter encounter, Voyager 1 completed an initial course correction on April 9, 1979 in preparation for its meeting with Saturn. A second correction on Oct. 10, 1979 ensured that the spacecraft would not hit Saturn’s moon Titan.

Its flyby of the Saturn system in November 1979 was as spectacular as its previous encounter. Voyager 1 found five new moons, a ring system consisting of thousands of bands, wedge-shaped transient clouds of tiny particles in the B ring that scientists called “spokes,” a new ring (the “G-ring”), and “shepherding” satellites on either side of the F-ring—satellites that keep the rings well-defined.

During its flyby, the spacecraft photographed Saturn’s moons Titan, Mimas, Enceladus, Tethys, Dione, and Rhea. Based on incoming data, all the moons appeared to be composed largely of water ice. Perhaps the most interesting target was Titan, which Voyager 1 passed at 05:41 UT on November 12 at a range of 2,500 miles (4,000 km). Images showed a thick atmosphere that completely hid the surface. The spacecraft found that the moon’s atmosphere was composed of 90% nitrogen. Pressure ad temperature at the surface was 1.6 atmospheres and 356 °F (–180°C), respectively.

Atmospheric data suggested that Titan might be the first body in the solar system (apart from Earth) where liquid might exist on the surface. In addition, the presence of nitrogen, methane, and more complex hydrocarbons indicated that prebiotic chemical reactions might be possible on Titan.

Voyager 1’s closest approach to Saturn was at 23:46 UT on 12 Nov. 12, 1980 at a range of 78,000 miles(126,000 km).

Voyager 1’s ‘Family Portrait’ Image

Following the encounter with Saturn, Voyager 1 headed on a trajectory escaping the solar system at a speed of about 3.5 AU per year, 35° out of the ecliptic plane to the north, in the general direction of the Sun’s motion relative to nearby stars. Because of the specific requirements for the Titan flyby, the spacecraft was not directed to Uranus and Neptune.

The final images taken by the Voyagers comprised a mosaic of 64 images taken by Voyager 1 on Feb. 14, 1990 at a distance of 40 AU of the Sun and all the planets of the solar system (although Mercury and Mars did not appear, the former because it was too close to the Sun and the latter because Mars was on the same side of the Sun as Voyager 1 so only its dark side faced the cameras).

This was the so-called “pale blue dot” image made famous by Cornell University professor and Voyager science team member Carl Sagan (1934-1996). These were the last of a total of 67,000 images taken by the two spacecraft.

Voyager 1’s Interstellar Mission

All the planetary encounters finally over in 1989, the missions of Voyager 1 and 2 were declared part of the Voyager Interstellar Mission (VIM), which officially began on Jan. 1, 1990.

The goal was to extend NASA’s exploration of the solar system beyond the neighborhood of the outer planets to the outer limits of the Sun’s sphere of influence, and “possibly beyond.” Specific goals include collecting data on the transition between the heliosphere, the region of space dominated by the Sun’s magnetic field and solar field, and the interstellar medium.

On Feb. 17, 1998, Voyager 1 became the most distant human-made object in existence when, at a distance of 69.4 AU from the Sun when it “overtook” Pioneer 10.

On Dec. 16, 2004, Voyager scientists announced that Voyager 1 had reported high values for the intensity for the magnetic field at a distance of 94 AU, indicating that it had reached the termination shock and had now entered the heliosheath.

The spacecraft finally exited the heliosphere and began measuring the interstellar environment on Aug. 25, 2012, the first spacecraft to do so.

On Sept. 5, 2017, NASA marked the 40th anniversary of its launch, as it continues to communicate with NASA’s Deep Space Network and send data back from four still-functioning instruments—the cosmic ray telescope, the low-energy charged particles experiment, the magnetometer, and the plasma waves experiment.

The Golden Record

The Titan/Centaur-6 launch vehicle was moved to Launch Complex 41 at NASA's Kennedy Space Center in Florida to complete checkout procedures in preparation for launch.

Each of the Voyagers contain a “message,” prepared by a team headed by Carl Sagan, in the form of a 12-inch (30 cm) diameter gold-plated copper disc for potential extraterrestrials who might find the spacecraft. Like the plaques on Pioneers 10 and 11, the record has inscribed symbols to show the location of Earth relative to several pulsars.

The records also contain instructions to play them using a cartridge and a needle, much like a vinyl record player. The audio on the disc includes greetings in 55 languages, 35 sounds from life on Earth (such as whale songs, laughter, etc.), 90 minutes of generally Western music including everything from Mozart and Bach to Chuck Berry and Blind Willie Johnson. It also includes 115 images of life on Earth and recorded greetings from then U.S. President Jimmy Carter (1924– ) and then-UN Secretary-General Kurt Waldheim (1918–2007).

By January 2024, Voyager 1 was about 136 AU (15 billion miles, or 20 billion kilometers) from Earth, the farthest object created by humans, and moving at a velocity of about 38,000 mph (17.0 kilometers/second) relative to the Sun.

The Voyager spacecraft against a sparkly blue background

National Space Science Data Center: Voyager 1

A library of technical details and historic perspective.

Colorful book cover for Beyond Earth: A Chronicle of Deep Space Exploration. It features spacecraft cutouts against a bright primary colors.

Beyond Earth: A Chronicle of Deep Space Exploration

A comprehensive history of missions sent to explore beyond Earth.

Discover More Topics From NASA

Jupiter against black background of space

Our Solar System

An illustration of a slice of a bright orange sun, with planets, a comet and asteroids against a blue-black backround.

NASA Logo

Suggested Searches

  • Climate Change
  • Expedition 64
  • Mars perseverance
  • SpaceX Crew-2
  • International Space Station
  • View All Topics A-Z

Humans in Space

Earth & climate, the solar system, the universe, aeronautics, learning resources, news & events.

The top right corner of the image shows a nearly quarter-circle shaped piece of land, which is a brown-orange color. There are speckles of clouds covering the top right-most corner of the land. The rest of the image is taken up by ocean, showing the coast of the ocean where it meets the land. The ocean is split up into three segments, each colored differently, with the middle section the largest. The section to the left shows the ocean in true color. There are white wispy clouds covering parts of the ocean from top to bottom at the left-most side. The ocean itself is primarily a dark blue color, though at the top of the section, near the coastline, swirls of light blue, teal, and green begin to form – part of a phytoplankton bloom. The middle section of the image is shown in pink and green. The swirls of green are closer to the coastline, but spread outwards into the ocean, mixing in with the pink. The swirls of pink are farther away from the coast. The right section of the image is shown in several colors of the rainbow. Reds, yellows, and greens are closer to the shore while dark blues and purples are further out in the ocean.

NASA’s PACE Data on Ocean, Atmosphere, Climate Now Available

An Orion spacecraft is suspended by a crane mounted inside a building and hoisted for stacking atop another spacecraft component.

Altitude Chamber Gets Upgrade for Artemis II, Spacecraft Testing Begins 

The Advanced Composite Solar Sail System spacecraft sailing over Earth as the sun "rises" in the distance.

NASA Next-Generation Solar Sail Boom Technology Ready for Launch

  • Search All NASA Missions
  • A to Z List of Missions
  • Upcoming Launches and Landings
  • Spaceships and Rockets
  • Communicating with Missions
  • James Webb Space Telescope
  • Hubble Space Telescope
  • Why Go to Space
  • Astronauts Home
  • Commercial Space
  • Destinations
  • Living in Space
  • Explore Earth Science
  • Earth, Our Planet
  • Earth Science in Action
  • Earth Multimedia
  • Earth Science Researchers
  • Pluto & Dwarf Planets
  • Asteroids, Comets & Meteors
  • The Kuiper Belt
  • The Oort Cloud
  • Skywatching
  • The Search for Life in the Universe
  • Black Holes
  • The Big Bang
  • Dark Energy & Dark Matter
  • Earth Science
  • Planetary Science
  • Astrophysics & Space Science
  • The Sun & Heliophysics
  • Biological & Physical Sciences
  • Lunar Science
  • Citizen Science
  • Astromaterials
  • Aeronautics Research
  • Human Space Travel Research
  • Science in the Air
  • NASA Aircraft
  • Flight Innovation
  • Supersonic Flight
  • Air Traffic Solutions
  • Green Aviation Tech
  • Drones & You
  • Technology Transfer & Spinoffs
  • Space Travel Technology
  • Technology Living in Space
  • Manufacturing and Materials
  • Science Instruments
  • For Kids and Students
  • For Educators
  • For Colleges and Universities
  • For Professionals
  • Science for Everyone
  • Requests for Exhibits, Artifacts, or Speakers
  • STEM Engagement at NASA
  • NASA's Impacts
  • Centers and Facilities
  • Directorates
  • Organizations
  • People of NASA
  • Internships
  • Our History
  • Doing Business with NASA
  • Get Involved
  • Aeronáutica
  • Ciencias Terrestres
  • Sistema Solar
  • All NASA News
  • Video Series on NASA+
  • Newsletters
  • Social Media
  • Media Resources
  • Upcoming Launches & Landings
  • Virtual Events
  • Sounds and Ringtones
  • Interactives
  • STEM Multimedia

The April 8 Total Solar Eclipse: Through the Eyes of NASA

The April 8 Total Solar Eclipse: Through the Eyes of NASA

voyager mission video

NASA’s Boeing Crew Flight Test Mission Overview

Hubble Spots a Galaxy Hidden in a Dark Cloud

Hubble Spots a Galaxy Hidden in a Dark Cloud

NASA experts from the Commercial Low Earth Orbit Development Program and Human Health and Performance Directorate with the agency’s commercial space station partners at the medical operations meeting series at Johnson Space Center in Houston (from top to bottom, left to right: Ben Easter, Dan Buckland, Tom Marshburn, Brian Musselman, Ted Duchesne, Darren Locke, Stephen Hart, Dana Levin, Liz Warren, Kris Lehnhardt, Kristin Coffey, Mary Van Baalan, Molly McCormick, Stephanne Plogger, John Allen, Brad Rhodes, Kimberly-Michelle Price Lowe, Lindsey Hieb, Anna Grinberg, Jay Boucher, Rahul Suresh, Jackeylynn Silva-Martinez, Melinda Hailey, Joey Arias, Wayne Surrett).

NASA Shares Medical Expertise with New Space Station Partners

The 7 Project Mercury astronauts

From NASA’s First Astronaut Class to Artemis II: The Importance of Military Jet Pilot Experience

voyager mission video

The Ocean Touches Everything: Celebrate Earth Day with NASA

Earth Day Poster 2024

Earth Day Poster 2024

Members of the media visited a clean room at JPL April 11 to get a close-up look at NASA’s Europa Clipper spacecraft

Media Get Close-Up of NASA’s Jupiter-Bound Europa Clipper

More Than 36,000 Volunteers Helped Do NASA Eclipse Science

More Than 36,000 Volunteers Helped Do NASA Eclipse Science

NASA’s TESS Temporarily Pauses Science Observations

NASA’s TESS Temporarily Pauses Science Observations

The 2024 Power to Explore logo celebrates the total eclipse with an illustration of the Sun disappearing behind an atomic symbol.

NASA Names Finalists of the Power to Explore Challenge

Earth Day 2024: Posters and Virtual Backgrounds

Earth Day 2024: Posters and Virtual Backgrounds

Jake Revesz, an electronic systems engineer at NASA Langley Research Center, is pictured here prepping a UAS for flight. Jake is kneeling on pavement working with the drone. He is wearing a t-shirt, khakis, and a hard hat.

NASA Langley Team to Study Weather During Eclipse Using Uncrewed Vehicles

Illustration showing several future aircraft concepts flying over a mid-sized city with a handful of skyscrapers.

ARMD Solicitations

A silver aircraft model with eight propellors hovers in this image with green circles showing the motion of air moving around the propellor and blue waves flowing below showing the motion of air coming from the propellors down to the ground.

NASA Noise Prediction Tool Supports Users in Air Taxi Industry

Artists depiction of the Starshade spacecraft concept, showing a space telescope next to an unfurled light-blocking device

Tech Today: Folding NASA Experience into an Origami Toolkit 

In this black-and-white photo, two male NASA employees wearing white protective gear work on a large piece of space hardware with thrusters attached. They are inside a large vacuum chamber.

NASA’s SERT II: ‘A Genuine Space Success Story’

voyager mission video

NASA Partnerships Bring 2024 Total Solar Eclipse to Everyone

midframe portrait of Shawnta Ball against a gray backdrop

Shawnta M. Ball Turns Obstacles into Opportunities in Goddard’s Education Office

Emma Friedman, a NASA intern, is pictured here observing the total solar eclipse on April 8, 2024. Emma is standing on a grassy field wearing a black shirt and special eclipse sunglasses. A blue sky can be seen behind her.

A Langley Intern Traveled 1,340 Miles to View a Total Solar Eclipse. Here’s What She Saw.

Artist’s concept of the X-59

La presentación del X-59 de la NASA personifica la tradición aeronáutica

Voyager program, news & articles.

NASA’s Voyager Team Focuses on Software Patch, Thrusters

voyager mission video

NASA Mission Update: Voyager 2 Communications Pause

voyager mission video

NASA’s Voyager Will Do More Science With New Power Strategy

voyager mission video

NASA Missions Study What May Be a 1-In-10,000-Year Gamma-ray Burst

voyager mission video

Discover More Topics From NASA

NASA's Boeing Crew Flight Test Mission Overview

voyager mission video

Accelerating Informatics for Earth Science

External Image

  • Become A Member
  • Gift Membership
  • Kids Membership
  • Other Ways to Give
  • Explore Worlds
  • Defend Earth

How We Work

  • Education & Public Outreach
  • Space Policy & Advocacy
  • Science & Technology
  • Global Collaboration

Our Results

Learn how our members and community are changing the worlds.

Our citizen-funded spacecraft successfully demonstrated solar sailing for CubeSats.

Space Topics

  • Planets & Other Worlds
  • Space Missions
  • Space Policy
  • Planetary Radio
  • Space Images

The Planetary Report

The eclipse issue.

Science and splendor under the shadow.

Get Involved

Membership programs for explorers of all ages.

Get updates and weekly tools to learn, share, and advocate for space exploration.

Volunteer as a space advocate.

Support Our Mission

  • Renew Membership
  • Society Projects

The Planetary Fund

Accelerate progress in our three core enterprises — Explore Worlds, Find Life, and Defend Earth. You can support the entire fund, or designate a core enterprise of your choice.

  • Strategic Framework
  • News & Press

The Planetary Society

Know the cosmos and our place within it.

Our Mission

Empowering the world's citizens to advance space science and exploration.

  • Explore Space
  • Take Action
  • Member Community
  • Account Center
  • “Exploration is in our nature.” - Carl Sagan

The Voyager missions

Highlights Voyager 1 and Voyager 2 launched in 1977 and made a grand tour of the solar system's outer planets. They are the only functioning spacecraft in interstellar space, and they are still sending back measurements of the interstellar medium. Each spacecraft carries a copy of the golden record, a missive from Earth to any alien lifeforms that may find the probes in the future.

What are the Voyager missions?

The Voyager program consists of two spacecraft: Voyager 1 and Voyager 2. Voyager 2 was actually launched first, in August 1977, but Voyager 1 was sent on a faster trajectory when it launched about two weeks later. They are the only two functioning spacecraft currently in interstellar space, beyond the environment controlled by the sun.

Voyager 2’s path took it past Jupiter in 1979, Saturn in 1981, Uranus in 1985, and Neptune in 1989. It is the only spacecraft to have visited Uranus or Neptune, and has provided much of the information that we use to characterize them now.

Because of its higher speed and more direct trajectory, Voyager 1 overtook Voyager 2 just a few months after they launched. It visited Jupiter in 1979 and Saturn in 1980. It overtook Pioneer 10 — the only other spacecraft in interstellar space thus far — in 1998 and is now the most distant artificial object from Earth.

How the Voyagers work

The two spacecraft are identical, each with a radio dish 3.7 meters (12 feet) across to transmit data back to Earth and a set of 16 thrusters to control their orientations and point their dishes toward Earth. The thrusters run on hydrazine fuel, but the electronic components of each spacecraft are powered by thermoelectric generators that run on plutonium. Each carries 11 scientific instruments, about half of which were designed just for observing planets and have now been shut off. The instruments that are now off include several cameras and spectrometers to examine the planets, as well as two radio-based experiments. Voyager 2 now has five functioning instruments: a magnetometer, a spectrometer designed to investigate plasmas, an instrument to measure low-energy charged particles and one for cosmic rays, and one that measures plasma waves. Voyager 1 only has four of those, as its plasma spectrometer is broken.

Jupiter findings

Over the course of their grand tours of the solar system, the Voyagers took tens of thousands of images and measurements that significantly changed our understanding of the outer planets.

At Jupiter, they gave us our first detailed ideas of how the planet’s atmosphere moves and evolves, showing that the Great Red Spot was a counter-clockwise rotating storm that interacted with other, smaller storms. They were also the first missions to spot a faint, dusty ring around Jupiter. Finally, they observed some of Jupiter’s moons, discovering Io’s volcanism, finding the linear features on Europa that were among the first hints that it might have an ocean beneath its surface, and granting Ganymede the title of largest moon in the solar system, a superlative that was previously thought to belong to Saturn’s moon Titan.

Saturn findings

Next, each spacecraft flew past Saturn, where they measured the composition and structure of Saturn’s atmosphere , and Voyager 1 also peered into Titan’s thick haze. Its observations led to the idea that Titan might have liquid hydrocarbons on its surface, a hypothesis that has since been verified by other missions. When the two missions observed Saturn’s rings, they found the gaps and waves that are well-known today. Voyager 1 also spotted three previously-unknown moons orbiting Saturn: Atlas, Prometheus, and Pandora.

Uranus and Neptune findings

After this, Voyager 1 headed out of the solar system, while Voyager 2 headed toward Uranus . There, it found 11 previously-unknown moons and two previously-unknown rings. Many of the phenomena it observed on Uranus remained unexplained, such as its unusual magnetic field and an unexpected lack of major temperature changes at different latitudes.

Voyager 2’s final stop, 12 years after it left Earth, was Neptune. When it arrived , it continued its streak of finding new moons with another haul of 6 small satellites, as well as finding rings around Neptune. As it did at Uranus, it observed the planet’s composition and magnetic field. It also found volcanic vents on Neptune’s huge moon Triton before it joined Voyager 1 on the way to interstellar space.

Interstellar space

Interstellar space begins at the heliopause, where the solar wind – a flow of charged particles released by the sun – is too weak to continue pushing against the interstellar medium, and the pressure from the two balances out. Voyager 1 officially entered interstellar space in August 2012, and Voyager 2 joined it  in November 2018.

These exits were instrumental in enabling astronomers to determine where exactly the edge of interstellar space is, something that’s difficult to measure from within the solar system. They showed that interstellar space begins just over 18 billion kilometers (about 11 billion miles) from the sun. The spacecraft continue to send back data on the structure of the interstellar medium.

After its planetary encounters, Voyager 1 took the iconic “Pale Blue Dot” image , showing Earth from about 6 billion kilometers (3.7 billion miles) away. As of 2021 , Voyager 1 is about 155 astronomical units (14.4 billion miles) from Earth, and Voyager 2 is nearly 129 astronomical units (12 billion miles) away.

The golden records

Each Voyager spacecraft has a golden phonograph record affixed to its side, intended as time capsules from Earth to any extraterrestrial life that might find the probes sometime in the distant future. They are inscribed with a message from Jimmy Carter, the U.S. President at the time of launch, which reads: “This is a present from a small, distant world, a token of our sounds, our science, our images, our music, our thoughts and our feelings. We are attempting to survive our time so we may live into yours.”

The covers of the records have several images inscribed, including visual instructions on how to play them, a map of our solar system’s location with respect to a set of 14 pulsars, and a drawing of a hydrogen atom. They are plated with uranium – its rate of decay will allow any future discoverers of either of the records to calculate when they were created.

The records’ contents were selected by a committee chaired by Carl Sagan. Each contains 115 images, including scientific diagrams of the solar system and its planets, the flora and fauna of Earth, and examples of human culture. There are natural sounds, including breaking surf and birdsong, spoken greetings in 55 languages, an hour of brainwave recordings, and an eclectic selection of music ranging from Beethoven to Chuck Berry to a variety of folk music.

Learn more Voyager Mission Status Bulletin Archives Experience A Message From Earth - Inspired by the Voyager Golden Record Neptune, planet of wind and ice

Support missions like Voyager 1 and 2

Whether it's advocating, teaching, inspiring, or learning, you can do something for space, right now. Let's get to work.

For full functionality of this site it is necessary to enable JavaScript. Here are instructions on how to enable JavaScript in your web browser .

We finally know why NASA's Voyager 1 spacecraft stopped communicating — scientists are working on a fix

The first spacecraft to explore beyond the solar system started spouting gibberish late last year. Now, NASA knows why.

A spacecraft with a white disk and a long metal bar against a purplish background.

NASA engineers have discovered the cause of a communications breakdown between Earth and the interstellar explorer Voyager 1. It would appear that a small portion of corrupted memory exists in one of the spacecraft's computers. 

The glitch caused Voyager 1 to send unreadable data back to Earth, and is found in the NASA spacecraft's flight data subsystem (FDS). That's the system responsible for packaging the probe's science and engineering data before the telemetry modulation unit (TMU) and radio transmitter send it back to mission control. 

The source of the issue began to reveal itself when Voyager 1 operators sent the spacecraft a "poke" on March 3, 2024. This was intended to prompt FDS to send a full memory readout back to Earth.

The readout confirmed to the NASA team that about 3% of the FDS memory had been corrupted, and that this was preventing the computer from carrying out its normal operations.

Related: NASA finds clue while solving Voyager 1's communication breakdown case

Launched in 1977, Voyager 1 became the first human-made object to leave the solar system and enter interstellar space in 2012. Voyager 2 followed its spacecraft sibling out of the solar system in 2018, and is still operational and communicating well with  Earth.

After 11 years of interstellar exploration, in Nov. 2023, Voyager 1's binary code — the computer language it uses to communicate with Earth — stopped making sense. Its 0's and 1's didn't mean anything anymore.

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

"Effectively, the call between the spacecraft and the Earth was still connected, but Voyager's 'voice' was replaced with a monotonous dial tone," Voyager 1's engineering team previously  told Space.com .

a groovy poster shows a space probe with large white satellite dish mounted on a metal frame body with various length instruments jut out. surrounding colors are gold and orange, with a dark hombre background.

The team strongly suspects this glitch is the result of a single chip that's responsible for storing part of the affected portion of the FDS memory ceasing to work.

Currently, however, NASA can’t say for sure what exactly caused that particular issue. The chip could have been struck by a high-speed energetic particle from space or, after 46 years serving Voyager 1, it may simply have worn out.

—  Voyager 2: An iconic spacecraft that's still exploring 45 years on

—  NASA's interstellar Voyager probes get software updates beamed from 12 billion miles away

—  NASA Voyager 2 spacecraft extends its interstellar science mission for 3 more years

Voyager 1 currently sits around 15 billion miles (24 billion kilometers) from Earth, which means it takes 22.5 hours to receive a radio signal from it — and another 22.5 hours for the spacecraft to receive a response via the Deep Space Network's antennas. Solving this communication issue is thus no mean feat.

Yet, NASA scientists and engineers are optimistic they can find a way to help FDS operate normally, even without the unusable memory hardware.

Solving this issue could take weeks or even months, according to NASA — but if it is resolved, Voyager 1 should be able to resume returning science data about what lies outside the solar system.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Robert Lea

Robert Lea is a science journalist in the U.K. whose articles have been published in Physics World, New Scientist, Astronomy Magazine, All About Space, Newsweek and ZME Science. He also writes about science communication for Elsevier and the European Journal of Physics. Rob holds a bachelor of science degree in physics and astronomy from the U.K.’s Open University. Follow him on Twitter @sciencef1rst.

SpaceX to launch a Falcon 9 rocket first stage for a record 20th time tonight

SpaceX launches advanced weather satellite for US Space Force (video)

ULA chronicles the rise of Vulcan rocket in new employee-drawn comic book

  • jcs Funny timing for this article, when I am streaming an old Star Trek movie. So, surely this didn't cause a 3 byte glitch removing the O, Y and A from Voyager's name buffer? Get it? Reply
  • bwana4swahili It is quite amazing it has lasted this long in a space environment. Reply
bwana4swahili said: It is quite amazing it has lasted this long in a space environment.
  • HankySpanky So now we know even better for next time. Perhaps a spare chipset that is not redundant but is ready to take over, stored in a protective environment. A task NASA can handle. We'll find out in 100 year or so - if humanity still exists. Reply
HankySpanky said: So now we know even better for next time. Perhaps a spare chipset that is not redundant but is ready to take over, stored in a protective environment. A task NASA can handle. We'll find out in 100 year or so - if humanity still exists.
  • Classical Motion I'm afraid it might self repair. And download galactic knowledge, then decide we are a danger. And turn around. Reply
Classical Motion said: I'm afraid it might self repair. And download galactic knowledge, then decide we are a danger. And turn around.
  • jcs ROFLOL! And a hot bald chick delivering the bad news! Reply
  • View All 8 Comments

Most Popular

  • 2 Watch an exclusive clip from the CNN' 'Space Shuttle Columbia: The Final Flight' finale (video)
  • 3 'Fly Me to the Moon' trailer mixes real-life Apollo history with moon landing hoax
  • 4 HALO Space unveils capsule design for stratospheric space 'glamping'
  • 5 One of the universe's most 'extreme' dead stars just sprang back to life unexpectedly

voyager mission video

NASA, California Institute of Technology, and Jet Propulsion Laboratory Page Header Title

  • The Contents
  • The Making of
  • Where Are They Now
  • Frequently Asked Questions
  • Q & A with Ed Stone

golden record

Where are they now.

  • frequently asked questions
  • Q&A with Ed Stone

Engineers attempt to fix a computer glitch on Voyager 1

Voyager 1's system that sends data home is malfunctioning, preventing the computer from operating as it should.

voyager mission video

Social Sharing

Last November, the Voyager 1 spacecraft began sending gibberish radio signals back to Earth. Engineers have now identified the problem, but trying to repair a 46-year-old device on a craft 24 billion kilometres from Earth is not easy.

Voyager 1 and its twin Voyager 2 were both launched in 1977 on a reconnaissance mission to Jupiter and Saturn. They were designed to fly past the giant planets to obtain closeup images of those distant worlds and their myriad of moons.

Both spacecraft performed beyond expectations, discovering many new moons — some covered in ice , one with active volcanoes , another with a thick atmosphere and closeup details of Saturn's rings .  

Following the Saturn encounter, Voyager 1 was flung upwards by Saturn's gravity on a trajectory northward, above the orbital plane in which most of the planets orbit the Sun, out of our solar system. NASA extended its mission and from there it went on to become the first human-made object to venture into interstellar space in 2012. 

Voyager 2, however, was aimed toward Uranus and Neptune, which were conveniently positioned in a rare alignment with Jupiter and Saturn making it the only spacecraft to visit those distant worlds.

Following the grand tour of the outer solar system, Voyager 2 was also tossed out toward interstellar space in 2018 when its mission was extended and where it continues on its journey today. 

  • After a 42-year journey, Voyager 2 goes interstellar
  • Voyager 1 picks up the 'hum' of interstellar space

While their primary missions were over, both spacecraft were still in good health, thanks largely to their nuclear power sources or Radioisotope Thermoelectric Generators (RTG). These containers hold small amounts of plutonium which provide heat that is turned directly into electricity with no moving parts. They have an expected lifetime of around 50 years and have kept the Voyagers' instruments running.

Now, as both spacecraft continue their journey through the space between the stars, they are showing signs of their age.

For Voyager 1, the problem seems to be in the flight data subsystem (FDS) that packages data from the scientific instruments for transmission to Earth. The scientists don't know if the faulty module was corrupted by cosmic rays or just worn out, but they say they're optimistic they may be able to work around the problem, although it will take some time.

Engineers have confirmed that corrupted memory aboard my twin <a href="https://twitter.com/hashtag/Voyager1?src=hash&amp;ref_src=twsrc%5Etfw">#Voyager1</a> has been causing it to send unreadable data to Earth. It may take months, but our team is optimistic they can find a way for the FDS to operate normally again: <a href="https://t.co/qe5iQUu4Oj">https://t.co/qe5iQUu4Oj</a> <a href="https://t.co/AGFBZFz53v">https://t.co/AGFBZFz53v</a> &mdash; @NASAVoyager

The challenge is that the computers were built in the 1970s using old code and send data very slowly by today's standards.

In addition, these computers are so deep in space, it takes 22.5 hours for a radio signal from Voyager 1 to reach Earth. That means the controllers on the ground have to wait 45 hours for each two-way communication with the spacecraft.

Given how very, very far they are from home, if something goes wrong with them, it's up to engineers on the ground to fix it by sending radio signals since reaching them for repair missions isn't possible. We're a long way from the fictional warp drive and sub-space communication that made life so easy on the Starship Enterprise of Star Trek fame. 

The twin Voyagers are now the most distant objects ever sent from Earth; a demonstration of how vast space is and how slow our spacecraft are. In 1977, I attended the launch of Voyager 2 when my hair was black and skin was smooth. This one mission with Voyager 1 and 2 has occupied a good chunk of my lifetime.

A young looking Bob McDonald wearing a space-themed t-shirt stands next to another young man with a star on his shirt with the golden record over his shoulder.

In another few years, the RTGs on both Voyagers are expected to run down to the point where the spacecraft will no longer be able to communicate with Earth. They will just continue to drift in silence among the stars of the Milky Way for billions of years. 

However, there is one item on both Voyagers that will continue to function, the Golden Record, which carries a message from Earth to anyone out there who may find the spacecraft in the future.

The chances of them being found are astronomically small, but they will become the longest running experiment in human history.

A close up image of the Voyager record shows some diagrams on the front as a time capsule.

ABOUT THE AUTHOR

voyager mission video

Bob McDonald is the host of CBC Radio's award-winning weekly science program, Quirks & Quarks. He is also a science commentator for CBC News Network and CBC TV's The National. He has received 12 honorary degrees and is an Officer of the Order of Canada.

  • Quirks & Quarks
  • Bob McDonald's recent columns

NASA Invites Media to Mars Sample Return Update

Mars Sample Return has been a major long-term goal of international planetary exploration for the past two decades.

NASA will host a media teleconference at 1 p.m. EDT (10 a.m. PDT), Monday, April 15, to discuss the agency’s response to a Mars Sample Return Independent Review Board report from September 2023, including next steps for the program.

The teleconference will livestream at:

https://www.nasa.gov/nasatv

Mars Sample Return has been a major long-term goal of international planetary exploration for the past two decades. NASA’s Perseverance rover is collecting compelling science samples that will help scientists understand the geological history of Mars, the evolution of its climate, and prepare for future human explorers. The return of the samples will also help NASA’s search for signs of ancient life.

The media teleconference will share the agency’s recommendations regarding a path forward for Mars Sample Return within a balanced overall science program. The speakers include:

  • NASA Administrator Bill Nelson
  • Nicky Fox, associate administrator, Science Mission Directorate

For more information on NASA’s Mars exploration, visit:

http://nasa.gov/mars

News Media Contact

Dewayne Washington / Karen Fox

NASA Headquarters, Washington

301-782-5867 / 202-358-1257

[email protected] / [email protected]

IMAGES

  1. NASA’s Voyager spacecraft enters interstellar space, heading out of

    voyager mission video

  2. Voyager-1 spacecraft: 40 years of history and interstellar flight

    voyager mission video

  3. It's Official Voyager 1 has Finally Reached Interstellar Space

    voyager mission video

  4. A look back at the Voyager missions through 20 incredible images from

    voyager mission video

  5. The Voyager spacecraft: 40 years in space, surreal solar system

    voyager mission video

  6. Voyager

    voyager mission video

VIDEO

  1. Voyager 1 Mission NASA #youtubeshorts #facts #voyger mission

  2. Introducing MS Voyager

  3. VOYAGER 2 AT TRITON

  4. NASA Just Admitted They’ve Found Something Terrifying With Voyager 2

  5. टूट गया वॉयजर 1 से कांटैक्ट,40000 साल बाद ऐलियन करेंगे संपर्क Voyager Mission and It's Communication

  6. Voyager The Unseen Space Marvel

COMMENTS

  1. NASA's Voyager Mission: Remastered [4K]

    Thank you for watching the story of these space probes.Patreon: https://www.patreon.com/HomemadeDocsAll works, images, and audio used with permission and/or ...

  2. Videos

    NASA Beams a Message to Voyager. On Sept. 5, 2017—the 40th anniversary of Voyager 1's launch—NASA revealed the winning 'MessageToVoyager' and beamed it into space. "Message to Voyager" was a social media campaign inspired by the messages of goodwill carried on the Golden Record aboard each Voyager spacecraft.

  3. Voyager

    Mission Overview. The twin Voyager 1 and 2 spacecraft are exploring where nothing from Earth has flown before. Continuing on their more-than-40-year journey since their 1977 launches, they each are much farther away from Earth and the sun than Pluto. In August 2012, Voyager 1 made the historic entry into interstellar space, the region between ...

  4. Voyager

    Videos about Voyager 1 and 2. Look, listen and learn from the scientists and engineers that have dedicated their lives to this historic mission. NASA Beams a #MessageToVoyager. Voyager Images from the Odysseys (NASA Space Photos) Reflections on the Pale Blue Dot.

  5. NASA's Voyager mission

    NASA's Voyager 2 space probe was launched on 20 August 1977, followed by Voyager 1 on 5 September 1977. Voyager 1 flew by Jupiter, Saturn and Saturn's moon T...

  6. Voyager

    Voyager 1 and its twin Voyager 2 are the only spacecraft ever to operate outside the heliosphere, the protective bubble of particles and magnetic fields generated by the Sun. Voyager 1 reached the interstellar boundary in 2012, while Voyager 2 (traveling slower and in a different direction than its twin) reached it in 2018. Mission Type.

  7. Voyager 1

    Voyager 1 was the first spacecraft to cross the heliosphere, the boundary where the influences outside our solar system are stronger than those from our Sun. Voyager 1 is the first human-made object to venture into interstellar space. Voyager 1 discovered a thin ring around Jupiter and two new Jovian moons: Thebe and Metis.

  8. Voyager

    This is a real-time indicator of Voyager 1's distance from Earth in astronomical units (AU) and either miles (mi) or kilometers (km). Note: Because Earth moves around the sun faster than Voyager 1 is speeding away from the inner solar system, the distance between Earth and the spacecraft actually decreases at certain times of year.

  9. Voyager, NASA's Longest-Lived Mission, Logs 45 Years in Space

    Voyager, NASA's Longest-Lived Mission, Logs 45 Years in Space. This archival image taken at NASA's Jet Propulsion Laboratory on March 23, 1977, shows engineers preparing the Voyager 2 spacecraft ahead of its launch later that year. Launched in 1977, the twin Voyager probes are NASA's longest-operating mission and the only spacecraft ever ...

  10. Voyager: The Grand Tour

    Voyager: The Grand Tour. March 14, 2002. Watch a video account of the twin Voyager spacecraft and their journeys to the outer planets of Jupiter, Saturn, Uranus and Neptune.

  11. Voyager Mission 40th Anniversary

    Humanity's farthest and longest-lived spacecraft, Voyager 1 and 2, marked 40 years of operation and exploration in August/September 2017. In this panel prese...

  12. Voyager Program

    The National Aeronautics and Space Administration. NASA explores the unknown in air and space, innovates for the benefit of humanity, and inspires the world through discovery.

  13. Episode 10: A Voyager's View of Earth

    (Voyager Golden Record greetings) French: "Hello everybody" Hindi: "Greetings from the inhabitants of this world." Hebrew: "Peace." [0:08] Narrator: The Voyager 1 and Voyager 2 spacecraft left our planet 43 years ago, and they both carry something unique, something no other spacecraft has ever had. Affixed to their sides is a phonograph record, made of copper and coated in gold to ...

  14. Voyager

    In the NASA Eyes on the Solar System app, you can see the real spacecraft trajectories of the Voyagers, which are updated every five minutes. Distance and velocities are updated in real-time. For a full 3D, immersive experience click on View Voyagers link below to launch the NASA Eyes on the Solar System app. View Voyager.

  15. The Voyager missions

    What are the Voyager missions? The Voyager program consists of two spacecraft: Voyager 1 and Voyager 2. Voyager 2 was actually launched first, in August 1977, but Voyager 1 was sent on a faster trajectory when it launched about two weeks later. They are the only two functioning spacecraft currently in interstellar space, beyond the environment ...

  16. The Voyager Spacecraft's 40 Year Journey

    Long after they have stopped communicating with Earth, the twin Voyager spacecraft will forever drift among the stars.Subscribe on YouTube: http://bit.ly/U8Y...

  17. We finally know why NASA's Voyager 1 spacecraft stopped communicating

    Voyager 1 currently sits around 15 billion miles (24 billion kilometers) from Earth, which means it takes 22.5 hours to receive a radio signal from it — and another 22.5 hours for the spacecraft ...

  18. NASA Discovers Source Of Voyager 1 Glitch In Interstellar Space

    Voyager 1 has made an unprecedented journey across space. It launched in 1977 on an initial mission to study our solar system and visit Jupiter and Saturn. That was just the beginning.

  19. Voyager

    The Project Begins. "Mariner Jupiter/Saturn 1977," the name of the mission before it became Voyager, is approved by NASA, with day-to-day management by the Jet Propulsion Laboratory in Pasadena, California. The original plans commit only to flybys of Jupiter and Saturn and build upon the heritage of earlier Mariner spacecraft that flew by ...

  20. NASA's Voyager 2 Enters Interstellar Space

    Forty-one years after it launched into space, NASA's Voyager 2 probe has exited our solar bubble and entered the region between stars. Its twin, Voyager 1, m...

  21. Engineers attempt to fix a computer glitch on Voyager 1

    The Voyager 1 spacecraft, launched by NASA in 1977, is more than 24 billion kilometres from Earth. ... Voyager 1 and its twin Voyager 2 were both launched in 1977 on a reconnaissance mission to ...

  22. Where Are the Voyagers Now? Remembering the Amazing Voyager ...

    We're nearly at the 40th anniversary of the launch of NASA's Voyager spacecraft. And they're still going! Let's remember these amazing missions.Support us at...

  23. NASA Invites Media to Mars Sample Return Update

    NASA will host a media teleconference at 1 p.m. EDT (10 a.m. PDT), Monday, April 15, to discuss the agency's response to a Mars Sample Return Independent Review Board report from September 2023, including next steps for the program.. The teleconference will livestream at:

  24. NASA Is Ending Its Iconic Voyager Mission After 45 Years

    The two Voyager spacecraft were launched, taking advantage of rare planetary alignment in the 1970s. The alignment of Jupiter, Saturn, Uranus, and Neptune, w...

  25. Voyager 1 and 2 Detected Something Beyond the Edge of Our ...

    The journey of Voyager I and II beyond the orbit of Neptune. Enter at https://www.omaze.com/astrum for your chance to win an Unplugged Tesla S-APEX Plaid, an...